Mergers And Acquisitions: Analog Devices Snaps Up Maxim Integrated For $21 B

Analog Devices will acquire Maxim Integrated for $20.9 billion dollars in stock, as reported by Bloomberg this morning.

Perhaps the confusing part of the news is that the Bloomberg article mentions the acquisition will let Analog Devices better compete with Texas Instruments. Wait, didn’t Texas Instruments acquire Maxim back in 2015? Actually, no. There were rumors (reported then by Bloomberg) that TI was nearing an acquisition deal but it fell through in January of 2016.

You may remember that Analog Devices snapped up Linear Tech in a $30 B acquisition back in 2017. Considering this morning’s news, how will they compare to the might of TI? Looks like 2019 revenue for TI was $14.38 B while Analog reported $5.99 B. Add in Maxim’s revenue of $3.1 B and there’s still a David and Goliath scenario here. Although revenue doesn’t tell the whole story and the proverbial slingshot for Analog may be its existing portfolio of high-margin devices, grown even larger with this acquisition.

Considering how the last half decade played out, this might mark the beginning of another wild cycle of mergers and acquisitions. The consolidation trend continues as we approach a world where just a few gigantic semiconductor companies turn production lines up to eleven to fill the world’s insatiable appetite for more powerful electronics (and more electronics in general).

This Week In Security: F5, Novel Ransomware, Freta, And Database Woes

The big story of the last week is a problem in F5’s BIG-IP devices. A rather trivial path traversal vulnerability allows an unauthenticated user to call endpoints that are intended to be restricted to authenticated. That attack can apparently be as simple as:

'https://[F5 Host]/tmui/login.jsp/..;/tmui/locallb/workspace/tmshCmd.jsp?command=list+auth+user+admin'

A full exploit has been added to the metasploit framework. The timeline on this bug is frighteningly quick, as it’s apparently being actively exploited in the wild. F5 devices are used all over the world, and this vulnerability requires no special configuration, just access to the opened management port. Thankfully F5 devices don’t expose the vulnerable interface to the internet by default, but there are still plenty of ways this can be a problem.

Freta

Microsoft has made a new tool publicly available, Freta. This tool searches for rootkits in uploaded memory snapshots from a Linux VM. The name, appropriately, is taken from the street where Marie Curie was born.

The project’s namesake, Warsaw’s Freta Street, was the birthplace of Marie Curie, a pioneer of battlefield imaging.

The impetus behind the project is the realization that once a malicious actor has compromised a machine, it’s possible to compromise any security software running on that machine. If, instead, one could perform a security x-ray of sorts, then a more reliable conclusion could be reached. Freta takes advantage of the VM model, and the snapshot capability built into modern hypervisors.

Continue reading “This Week In Security: F5, Novel Ransomware, Freta, And Database Woes”

Bridge Over Trebled Water: How The Golden Gate Bridge Started To Sing

Throughout the spring, some Bay Area residents from Marin County to the Presidio noticed a sustained, unplaceable high-pitched tone. In early June, the sound reached a new peak volume, and recordings of the eerie noise spread across Twitter and Facebook. Soon after, The Golden Gate Bridge, Highway, & Transportation District, the agency responsible for the iconic suspension bridge’s maintenance, solved the mystery: The sound was due to high winds blowing through the slats of the bridge’s newly-installed sidewalk railing. Though a more specific explanation was not provided, the sound is most likely an Aeolian tone, a noise produced when wind blows over a sharp edge, resulting in tiny harmonic vortices in the air.

The modification of the Golden Gate Bridge railing is the most recent and most audible element of a multi-phase retrofit that has been underway since 1997. Following the magnitude 6.9 Loma Prieta Earthquake in 1989, The Golden Gate Bridge, Highway, & Transportation District (The District) began to prepare the iconic bridge for the wind and earthquake loads that it may encounter in its hopefully long life. Though the bridge had already withstood the beating of the Bay’s strong easterly winds and had been rattled by minor earthquakes, new analysis technology and construction methods could help the span hold strong against any future lateral loading. The first and second phases of the retrofit targeted the Marin Viaduct (the bridge’s north approach) and the Fort Point Arch respectively. The third and current phase addresses the main span.

Continue reading “Bridge Over Trebled Water: How The Golden Gate Bridge Started To Sing”

Bantam Tools PCB Mill Gets A Ferocious New Sequel

When the first Bantam Tools’ Milling Machine landed, it put PCB prototyping at the forefront with a smooth software and hardware pipeline for spinning out circuit boards in a manner of minutes. Now the folks at Bantam Tools are back, putting those insights into a new machine that makes cutting aluminum a first class feature. While machine details are still sparse from their announcement page, knowing that Bantam Tools has spent a few years turning classrooms of students into hardware prototypes reassures us that we’re in good hands. Now let’s spill some beans on this beast. Continue reading “Bantam Tools PCB Mill Gets A Ferocious New Sequel”

Automating The Disinfection Of Large Spaces With Robots

What do you do when you have to disinfect an entire warehouse? You could send a group of people through the place with UV-C lamps, but that would take a long time as said humans cannot be in the same area as the UV-C radiation, as much as they may like the smell of BBQ chicken. Constantly repositioning the lamps or installing countless lamps would get in the way during normal operation. The answer is to strap UV-C lights to a robot according to MIT’s CSAIL, and have it ride around the space.

As can be seen in the video (also embedded after the break), a CSAIL group has been working with telepresence robotics company Ava Robotics and the Greater Boston Food Bank (GBFB). Their goal was to create a robotic system that could autonomously disinfect a GBFB warehouse using UV-C without exposing any humans to the harmful radiation. While the robotics can be controlled remotely, they can also map the space and navigate between waypoints.

While testing the system, the team used a UV-C dosimeter to confirm the effectiveness of this setup. With the robot driving along at a leisurely 0.22 miles per hour (~0.35 kilometer per hour), it was able to cover approximately 4,000 square feet (~372 square meter) in about half an hour. They estimated that about 90% of viruses like SARS-CoV-2 could be neutralized this way.

During trial runs, they discovered the need to have the robot adapt to the constantly changing layout of the warehouse, including which aisles require which UV-C depending on how full they are. Having multiple of these robots in the same space coordinate with each other would also be a useful feature addition.

Continue reading “Automating The Disinfection Of Large Spaces With Robots”

Your Own Open Source ASIC: SkyWater-PDK Plans First 130 Nm Wafer In 2020

You might have caught Maya Posch’s article about the first open-source ASIC tools from Google and SkyWater Technology. It envisions increased access to make custom chips — Application Specific Integrated Circuits — designed using open-source tools, and made real through existing chip fabrication facilities. My first thought? How much does it cost to tape out? That is, how do I take the design on my screen and get actual parts in my hands? I asked Google’s Tim Ansel to explain some more about the project’s goals and how I was going to get my parts.

The goals are pretty straightforward. Tim and his collaborators would like to see hardware open up in the same way software has. The model where teams of people build on each other’s work either in direct collaboration or indirectly has led to many very powerful pieces of software. Tim’s had some success getting people interested in FPGA development and helped produce open tools for doing so. Custom ASICs are the next logical step.

Continue reading “Your Own Open Source ASIC: SkyWater-PDK Plans First 130 Nm Wafer In 2020”

Updating The Language Of SPI Pin Labels To Remove Casual References To Slavery

This morning the Open Source Hardware Association (OSHWA) announced a resolution for changing the way SPI (Serial Peripheral Interface) pins are labelled on hardware and in datasheets. The protocol originally included MOSI/MISO references that stand for “Master Out, Slave In” and “Master In, Slave Out”. Some companies and individuals have stopped using these terms over the years, but an effort is being taken up to affect widespread change, lead by Nathan Seidle of Sparkfun.

The new language for SPI pin labeling recommends the use of SDO/SDI (Serial Data Out/In) for single-role hardware, and COPI/CIPO for “Controller Out, Peripheral In” and “Controller In, Peripheral Out” for devices that can be either the controller or the peripheral. The change also updates the “SS” (Slave Select) pin to use “CS” (Chip Select).

SPI is widely used in embedded system design and appears in a huge range of devices, with the pin labels published numerous times in everything from datasheets and application notes to written and video tutorials posted online. Changing the labels removes unnecessary references to slavery without affecting the technology itself. This move makes embedded engineering more inclusive, an ideal that’s easy to get behind.

[2022 Editor’s Note: The OSHWA changed its recommended naming to PICO/POCI for “Peripheral In, Controller Out” and “Peripheral Out, Controller In”. Fine by us! I’ve updated this throughout the rest of the article because it doesn’t change Mike’s original argument at all.]

Continue reading “Updating The Language Of SPI Pin Labels To Remove Casual References To Slavery”