Simple Robot Arm With Steppers Has Pleasingly Smooth Motion

The usual go-to when building a simple robot arm is the ever-pervasive hobby servo. However, these devices are not precise, and are typically jerky and unreliable. They have their advantages, but if strength is not needed a stepper motor would provide much better motion in the same price range.

Those are the lines along which [Bajdi] was thinking when he forked the Mearm project, and adapted it for small stepper motors. First he tried printing out the servo version on thingiverse. It worked, but the parts were not ideal for 3D printing, and he didn’t like the movement.

So he purchased some 28BYJ-48 motors. These are tiny little geared steppers that tend to show up in the odd project. He modified and simplified the files in FreeCAD. With the addition of a CNC shield and an Arduino he had every thing he needed for the upgrade. A servo is now only used for the gripper.

The robot is almost certainly weaker in its payload ability, but as you can see in the before and after videos after the break, it is dramatically smoother and more accurate.

Continue reading “Simple Robot Arm With Steppers Has Pleasingly Smooth Motion”

Contender For World’s Most Unsettling Drone?

We’re not sure what FESTO is advertising with their odd flying beach ball. Amongst inspirational music it gently places its translucent appendage over a water bottle and then engulfs it with an unsettling plastic sound. With a high pitched whine it hovers away with its prey and deposits it in the hand of a thirsty business man, perhaps as a misguided nurturing instinct.

Despite discovering a new uncanny valley, the robot is pretty cool. It appears to a be a hybrid airship/helicopter on a small-scale. The balloon either zeros out the weight of the robot or provides slightly more lift. It’s up to the propellers to provide the rest.

We like the carbon fiber truss around the drone. It’s a really slick build with barely an untamed wire. This seems like a much safer design than a quadcopter for indoor flying. If its end effector wasn’t so creepy it would be even cooler. Video after the break.

Continue reading “Contender For World’s Most Unsettling Drone?”

Line Following Robot Trains Runners

Can your line following robot move faster than [Usain Bolt] who has been described as “The World’s Fastest Timed Human”? Puma, the athletic footwear, apparel and accessories company, created such a robot to help train their company sponsored athletes.

The shoebox-sized robot exceeds [Bolt]’s top speed of 44-km/hour. At that speed, following a line gets tricky. It took the development team 8 prototypes to attain that capability. Inside the BeatBot an Arduino reads 9 infrared sensors for line detection at 100 samples a second. A digital servo controls the Ackerman steering mechanism to follow the line on the track or floor. Wheel encoders provide the data for speed and distance measurement.

The user can set the distance of the run and the time to beat. Run pacing can also be adjusted. LEDs on the robot provide the starting ‘gun’ and help the runner see the BeatBot using peripheral vision. Two GoPro cameras, front and rear, provide a visual record of the run.

Puma believes that actually running against a competitor, even a robot, improves performance more than just running against the clock. They’re betting a grown-up line follower will help Olympic class athletes improve their performance. Continue reading “Line Following Robot Trains Runners”

Robot Beats Piano Tiles

Machines running out of control are one of the staples of comedy. For the classic expression, see Chaplin’s “Modern Times”. So while it starts out merely impressive that [Denver Finn]’s robotic fingers can play an iPad piano video game, it ends up actually hilarious. Check out the linked video to see what we mean.

Continue reading “Robot Beats Piano Tiles”

Open Source Robotics With WireBeings

Everyone needs a cute robotic buddy, right? [Matthew Hallberg] created WireBeings, an open source 3D printed robotic platform. Looking like a cross between Wall-E and Danbo, WireBeings is designed around the Arduino platform. We do mean the entire platform. You can fit anything from an Arduino micro to a Mega2560 stacked with 3 shields in its oversized head. There’s plenty of room for breadboards and custom circuits.

WireBeings is designed to be 3D printed. All the non-printable parts are commonly available. Gear motors, wheels, the ubiquitous HC-SR04 ultrasonic sensor, and a few other parts are all that is needed to bring this robot to life. Sketches are downloaded via USB. Once running, WireBeings can communicate via an HC-06 Bluetooth module.  If the Arduino isn’t enough power for whatever project you’re working on, no problem. [Matt] designed WireBeings to carry a smartphone. Just connect the robot and phone via Bluetooth, and let the phone’s processor do all the heavy lifting. What if you don’t have a spare phone? Check our report on hacks using prepaid Android Smartphones.

We could see WireBeings as the centerpiece for a “learn Arduino” class at a hackerspace. Start with the classic blinky sketch on one of the robot’s eyes. Build from there until the students have a fully functioning robot.

There is definitely room for improvement on the WireBeings project. [Matt] made the rookie mistake of going with a single 9-volt battery to power his creation. While a 9V is fine for the Arduino, those motors will quickly drain it. [Matt’s] planning on moving to a LiPo in the future. Why not stop by the project page and give him a hand?

Continue reading “Open Source Robotics With WireBeings”

Strandmaus, Small R/C Strandbeest

[Jeremy Cook] has been playing around with strandbeests for a while, but never had one that walked until he put a motor on it and made it R/C controlled.

These remote controlled strandbeests can’t be too heavy or they have trouble moving. He didn’t want to get too complicated, either. [Jeremy] decided his first idea – hacking a cheap R/C car – wouldn’t work. The motors and AA batteries in these cars are just too heavy. Then he realized he had a broken quadcopter lying around. The motors were all burnt out, but the battery, controller, and driver board still works. On a hunch, he hooked up beefier motors to the front and left rotor control, and found that it worked just fine.

The rest of the work was just coupling it to the mechanism. The mechanism is made of wood and metal tubes. [Jeremy] found that the strandmaus had a tendency to fall down. He figures that’s why the original strandbeests had so many legs.

For his next iteration he wants to try to make it more stable, but for now he’s just having fun seeing his little legged contraption scoot around the floor. Video after the break.

Continue reading “Strandmaus, Small R/C Strandbeest”

Robotic Vacuums Get Torn-down For Design Showdown.

Fictiv runs a 3D printing shop. They have a nice interface and an easy to understand pricing scheme. As community service, or just for fun, they decided to tear-down two robot vacuums and critique their construction while taking really nice pictures.

The first to go is the iRobot 650 model. For anyone who’s ever taken apart an iRobot product, you’ll be happy to know that it’s the same thousand-screws-and-bits-of-plastic ordeal that it always was. However, rather than continue their plague of the worst wire routing imaginable, they’ve switched to a hybrid of awfulness and a clever card edge system to connect the bits and pieces.

The other bot is the Neato XV-11. It has way fewer screws and plastic parts, and they even tear down the laser rangefinder module that’s captured many a hacker’s attention. The wire routing inside the Neato is very well done and nicely terminated in hard-to-confuse JST connectors. Every key failure point on the Neato, aside from the rangefinder, can be replaced without disassembling the whole robot. Interestingly, the wheels on both appear to be nearly identical.

In the end they rate the Neato a better robot, but the iRobot better engineered. Though this prize was given mostly for the cleverness of the card edge connectors.