Nokia LCD Goes Transparent For Hands-Free Reminders

These days everyone’s excited about transparent OLED panels, but where’s the love for the classic Nokia 5110 LCD? As the prolific [Nick Bild] demonstrates in his latest creation, all you’ve got to do is peel the backing off the the late 90s era display, and you’ve got yourself a see-through cyberpunk screen for a couple bucks.

View through the modified LCD.

In this case, [Nick] has attached the modified display to a pair of frames, and used an Adafruit QT Py microcontroller to connect it to the ESP32 powered ESP-EYE development board and OV2640 camera module. This lets him detect QR codes within the wearer’s field of vision and run a TensorFlow Lite neural network right on the hardware. Power is provided by a 2000 mAh LiPo battery running through an Adafruit PowerBoost 500.

The project, intended to provide augmented reality reminders for medical professionals, uses the QR codes to look up patient and medication information. Right now the neural network is being used to detect when the wearer has washed their hands, but obviously the training model could be switched out for something different as needed. By combining these information sources, the wearable can do things like warn the physician if a patient is allergic to the medication they’re currently looking at.

Relevant information and warnings are displayed on the Nokia LCD, which has been placed far enough away from the eye that the user can actually read the text; an important design consideration that [Zach Freedman] demonstrated with his (intentionally) illegible wearable display a few weeks back. That does make the design a bit…ungainly, but at least you don’t have to worry about hand-cutting your optics

mRNA badge next to an image of the actual Moderna vaccine nanoparticle.

Celebrate MRNA Vaccine With This Badge That Blinks The Nucleotide Code

To celebrate getting his second vaccine dose [Paul Klinger] combined two of our favorite things — blinking lights and wearable tech — to create an awesome mRNA vaccine badge.

The badge, which is designed to be worn like a pendant, will slowly blink through all 4,000 nucleotides of the Moderna vaccine over the course of 10 minutes. Watch the video after the break to see it in action. Don’t worry if you got the Pfizer vaccine, you can use the interface button on the back of the badge to change over to Pfizer’s mRNA sequence instead. There’s even a handy legend on the badge, identifying the lipids in case your microbiology skills are a bit rusty.

On the reverse side of the board, you will find a handful of current limiting resistors, a CR2032 battery holder, and the ATtiny1617 microcontroller that runs everything. To assist in converting the mRNA sequence into LED pulses, [Paul] wrote a Python script that will automatically import the nucleotide string from the standard .fasta file and store each nucleotide in just 2 bits, allowing the entire sequence to fit in the program memory of the microcontroller.

This isn’t [Paul’s] first RNA-related project; he originally developed the aforementioned Python script to compress the entirety of the COVID-19 sequence, containing over 30,000 nucleotides, into program memory for his Virus Blinky project, that we featured last year.

Continue reading “Celebrate MRNA Vaccine With This Badge That Blinks The Nucleotide Code”

Why You Can’t Make A Wearable Display With A Transparent OLED

After seeing the cheap transparent OLED displays that have recently hit the market, you might have thought of using them as an affordable way to build your own wearable display. To save you the inevitable disappointment that would result from such a build, [Zack Freedman] took it upon himself to test out the idea, and show why transparent wearable displays are a harder than it looks.

He put together a headband with integrated microcontroller that holds the transparent OLED over the user’s eye, but unfortunately, anything shown on the display ends up being more or less invisible to the wearer. As [Zack] explains in the video after the break, the human eye is physically incapable of focusing on any object at  such a short distance. Contrary to what many people might think, the hard part of wearable displays is not in the display itself, but rather the optics.  For a wearable display to work, all the light beams from the display need to be focused into your eyeball by lenses and or reflectors, without distorting your view of everything beyond the lens. This requires, lightweight and distortion-free collimators and beam splitters, which are expensive and hard to make.

While these transparent OLEDs might not make practical heads-up displays, they are still a cool part for projects like a volumetric display. It’s certainly possible to build your own smart glasses or augmented reality glasses, you just need to focus on getting the optics right.

3D Printed Fabric Stiffens On Demand

Researchers in Singapore and at CalTech have developed a 3D printed fabric with an interesting property: it is generally flexible but can stiffen on demand. You can see a video about the new fabric, below.

The material consists of nylon octahedrons interlocked. The cloth is enclosed in a plastic envelope and vacuum-packed. Once in a vacuum, the sheet becomes much stiffer and can hold many times its own weight.

Continue reading “3D Printed Fabric Stiffens On Demand”

3D Printed Smart Glasses Put Linux In Your Face

Unimpressed by DIY wearables powered by dinky microcontrollers, [Teemu Laurila] has been working on a 3D printed head-mounted computer that puts a full-fledged Linux desktop in your field of view. It might not be as slim and ergonomic as Google Glass, but it more than makes up for it in terms of raw potential.

Featuring an overclocked Raspberry Pi Zero W, a ST7789VW 240×240 IPS display running at 60 Hz, and a front-mounted camera, the wearable makes a great low-cost platform for augmented reality experiments. [Teemu] has already put together an impressive hand tracking demonstration that can pick out the position of all ten fingers in near real-time. The processing has to be done on his desktop computer as the Zero isn’t quite up to the task, but as you can see in the video below, the whole thing works pretty well.

Precision optics, courtesy of a hacksaw

Structurally, the head-mounted unit is made up of nine 3D printed parts that clip onto a standard pair of glasses. [Teemu] says the parts will probably need to be tweaked to fit your specific frames, but the design is modular enough that it shouldn’t take too much effort. He’s using 0.6 mm PETG plastic for the front reflector, and the main lens was pulled from a cheap pair of VR goggles and manually cut down into a rectangle.

The evolution of the build has been documented in several videos, and it’s interesting to see how far the hardware has progressed in a relatively short time. The original version made [Teemu] look like he was cosplaying as a Borg drone from Star Trek, but the latest build appears to be far more practical. We still wouldn’t try to wear it on an airplane, but it would hardly look out of place at a hacker con.

Continue reading “3D Printed Smart Glasses Put Linux In Your Face”

A rectangle-shaped wristband wearable, worn on a wrist

A Digital White Cane For The Visually Impaired

The white cane (and its many variants) is an everyday carry for many visually impaired people. This low-tech tool allows those afflicted by visual impairment to safely navigate the world around them, and has been ubiquitous in many parts of the world for decades. [Madaeon] has been hard at work going one step further in prototyping an open-source assistive wearable that could help in situations where a cane is not practical, or useful.

The T.O.F Wristband V2 alerts its wearer to nearby obstacles through vibrations, and is able to detect objects up to four meters away. As the wearer veers closer and closer to an obstacle, the vibration increases in frequency. A time-of-flight distance sensor is controlled by a Feather, and the whole system is powered by a small lithium-polymer battery. The prototype consists of just four components plus a 3D printed case and bracelet, which inevitably keeps down costs and complexity.

Version two of this project picks up where version one left off. In that project, [Madaeon] mentioned the possibility of squeezing this project down to the size of a ring. Perhaps with better battery technology, a ring-sized sensor might just be possible one day.

This isn’t the first wearable that has set out to assist the visually impaired. Back in 2019 we covered a laser-augmented glove that attempts something very similar.

By some estimates, nearly one billion people worldwide have some degree of visual impairment. Assistive devices like the T.O.F Wristband V2, and others like it, offer these people the potential for greater independence and an improved standard of living.

Continue reading “A Digital White Cane For The Visually Impaired”

A Stress Monitor Designed Specifically To Help You Work From Home

There are quite a bit of mixed emotions regarding working from home. Some people love it and are thriving like they haven’t before, but others are having a bit of a hard time with it all. [Brandon] has been working from home for the last 12 years, but even after so many years of managing this type of work culture, he admits that it can still be a little stressful. He says he doesn’t take enough time in between tasks to simply relax and to breathe a little and the day-to-day minutia of his work can drive his stress level up if he doesn’t take some time to calm himself. He figured he could make something to monitor his stress level and remind himself to take a break and the results are pretty impressive.

He develops a system to monitor his heart rate and the ambient noise level in his room and uses these metrics as a measure of stress. If his heart rate or the ambient noise level goes above a certain threshold, then he sends himself a text message reminding himself to relax and take a break. You’ve probably seen people use heart rate as a measure of stress already, but you’re probably less familiar with using sound. [Brandon] basically thought the sound sensor would detect if he starts ranting for prolonged periods of time or if he’s in a Zoom meeting that gets too heated. We thought that was pretty neat.

[Brandon] used an off-the-shelf chest strap heart rate monitor to save himself a bit of time in trying to build his own. The device sends heart rate data to an nRF52840 over Bluetooth and then pushes the data to the cloud using a Blues Wireless Notecard. The Notecard also offers data encryption which gave [Brandon] some added peace of mind knowing his biometric data wasn’t floating around in the cloud without any sort of protection. This certainly isn’t medical-grade encryption, but it gave him a bit of comfort, nonetheless. All that data is processed in his custom-designed web app and when the appropriate thresholds are reached, he sends a text message to himself using Twilio reminding him to relax and unwind for a bit.

For his next iteration, [Brandon] might try making his own heart rate monitor. But until then, stay safe everybody, and remember to take a break whenever you need it.

Continue reading “A Stress Monitor Designed Specifically To Help You Work From Home”