Jewelry Meets Carpentry With Bentwood Rings

[Dorkyducks] is a bit of a jeweler, a bit of a carpenter, and a bit of a hacker.  They’ve taken some time to document their technique for making bentwood rings. Bentwood is technique of wetting or steaming wood, then bending or forming it into new shapes. While the technique is centuries old, this version gets a bit of help from a modern heat source: The microwave oven. [Dorkyducks] starts with strips of veneer, either 1/36″ or 1/42″ thick. The veneer is cut into strips 1/2″ wide by about 12″ long, wrapped in a wet paper towel, and microwaved. The microwaveglue-roll heats the water in the towel, steaming it into the wood. This softens the wood fibers, making the entire strip flexible. The softened wood is then wrapped around a wooden preform dowel and allowed to dry for a day or two.

Once dry, the wood will hold the circular shape of the dowel. [Dorkyducks] then uses masking tape to tack the wood down to a new dowel which is the proper ring size for the wearer. Then it’s a superglue and wrapping game. The glue holds the laminated veneer together, and gives the ring it’s strength. From there it’s sanding, sanding, sanding. At this point, the ring can be shaped, and inlays added. [Dorkyducks] shows how to carve a ring and insert a gemstone in this gallery. The final finish is beeswax and walnut oil, though we’d probably go for something a bit longer lasting – like polyurethane.

Because Burning Man Needed More LEDs

There are a lot of blinky glowy things at Burning Man every year, and [Mark] decided he would literally throw his hat into the ring. He built a high visibility top hat studded with more RGB LEDs than common sense would dictate. It’s a flashy hat, and a very good example of the fashion statement a few hundred LEDs can make.

[Mark]’s top hat has 481 WS2812b addressable LEDs studded around the perimeter, a common LED choice for bright and blinky wearables. These LEDs are driven by a Teensy 3.1, with a Bluetooth transceiver, a GPS module, a compass, and gyro/accelerometer attached to the microcontroller. That’s a lot of hardware, but it gives [Mark] the capability of having the hat react to its own orientation, point itself North, and allow for control via a modified Nintendo NES controller.

The WS2812 LEDs draw a lot of power, and for any wearable project having portable power is a chief concern. [Mark]’s original plan was to use an 8x battery holder for the electronics enclosure, and use five AA batteries to power the hat. The total idle draw of the LEDs was 4.5 Watts, and with even a few LEDs blinking colors there was a significant voltage drop. The idea of powering the hat with AA batteries was discarded and the power source was changed to a 195 Watt-hour lithium ion battery bank that was topped off each day with a solar panel.

The hat is awesome, exceedingly bright, and something that gets a lot of attention everywhere  it goes. For indoor use, it might be too bright, but this could be fixed with the addition of a bit of black stretchy fabric, like what our own [Mike Szczys] did for his DEF CON hat. [Mark]’s hat is just version 1, and he plans on making a second LED hat for next year.

Becoming A Zombie With The Hackable Electronic Badge

Last week, Parallax released an open hackable electronic badge that will eventually be used at dozens of conferences. It’s a great idea that allows badge hacks developed during one conference to be used at a later conference.

[Mark] was at the Hackable Electronics Badge premier at the 2015 Open Hardware Summit last weekend, and he just finished up the first interactive hack for this badge. It’s the zombie apocalypse in badge form, pitting humans and zombies against each other at your next con.

The zombie survival game works with the IR transmitter and receiver on the badge normally used to exchange contact information. Upon receiving the badge, the user chooses to be either a zombie or survivor. Pressing the resistive buttons attacks, heals, or infects others over IR. The game is your standard zombie apocalypse affair: zombies infect survivors, survivors attack zombies and heal the infected, and the infected turn into zombies.

Yes, a zombie apocalypse is a simple game for a wearable with IR communications, but for the Hackable Electronics Badge, it’s a great development. There will eventually be tens of thousands of these badges floating around at cons, and having this game available on day-one of a conference will make for a lot of fun.

The Open, Hackable Electronic Conference Badge

Electronic conference badges have been around for at least a decade now, and they all have the same faults. They’re really only meant to be used for a few days, conference organizers and attendees expect the badge to be cheap, and because of the nature of a conference badge, the code just works, and documentation is sparse.  Surely there’s a better way.

Enter the Hackable Electronic Badge. Ever since Parallax started building electronic conference badges for DEF CON, they’ve gotten a lot of requests to build badges for other conventions. Producing tens of thousands of badges makes Parallax the go-to people for your conference badge needs, but the requests for badges are always constrained by schedules that are too short, price expectations that are too low, and volumes that are unknown.

There’s a market out there for electronic conference badges, and this is Parallax’s solution to a recurring problem. They’re building a badge for all conferences, and a platform that can be (relatively) easily modified while still retaining all its core functionality.

Continue reading “The Open, Hackable Electronic Conference Badge”

Mechanical Watch Hacker Gets An Apple Watch

Mechanical watch enthusiasts see the Apple watch as a threat to the traditional gear train. It does not tick, requires frequent re-charging, and it’s certainly not the most attractive of watches. But it can direct you to the local coffee shop, allow you to communicate with friends anywhere in the world, get you onto an airplane after the most awkward of arm gestures, and keep you apprised of the latest NCAA basketball scores. Is the advent of the smart watch the end to the mechanical watch?
Continue reading “Mechanical Watch Hacker Gets An Apple Watch”

Jellyfish skirt

Jellyfish Inspired LED Skirt For Burning Man

[Lumilectric] is getting ready for Burning Man and made herself this fantastic fiber optic LED skirt.

She’s always been fascinated by fiber optics and the effect they create, so she wanted to try using them in a project, and this was just the ticket. The tricky part was figuring out how best to couple cheap fiber optic strands off eBay with a strip of RGB LEDs.

In the end she figured out a way to make rudimentary fiber optic coupling joints using vinyl tubing. She managed to fit 17 strands of 0.5mm diameter fiber into a 6mm diameter vinyl tube. To improve light transfer when it’s all together, you can gently melt the ends of the fiber optics together to glaze the plastic into a single clear surface — don’t melt the vinyl though!

Continue reading “Jellyfish Inspired LED Skirt For Burning Man”

It’s Time To Roll Your Own Smartwatch

Giant wristwatches are so hot right now. This is a good thing, because it means they’re available at many price points. Aim just low enough on the scale and you can have a pre-constructed chassis for building your own smartwatch. That’s exactly what [benhur] did, combining a GY-87 10-DOF module, an I²C OLED display, and an Arduino Pro Mini.

The watch uses one button to cycle through its different modes. Date and time are up first, naturally. The next screen shows the current temperature, altitude, and barometric pressure. Compass mode is after that, and then a readout showing your step count and kilocalories burned.

In previous iterations, the watch communicated over Bluetooth to Windows Phone, but it drew too much power. With each new hardware rev, [benhur] made significant strides in battery life, going from one hour to fourteen to a full twenty-fours.

Take the full tour of [benhur]’s smartwatch after the break. He’s open to ideas for the next generation, so share your insight with him in the comments. We’d like to see some kind of feedback system that tells us when we’ve been pounding away at the Model M for too long.  Continue reading “It’s Time To Roll Your Own Smartwatch”