Reflecting On Margaret Hamilton: 50 Years After Apollo 11

In celebration of the 50th anniversary of the first Apollo moon landing, Google created a 1.4-square-mile portrait of NASA software developer Margaret Hamilton using more than 107,000 mirrors from the Ivanpah Solar Facility in the Mojave Desert, a solar thermal power plant with a gross capacity of 392 megawatts.

The fields of heliostat mirrors (173,500 in total) ordinarily focus sunlight on receivers located on the solar power towers, which subsequently generate steam to drive steam turbines. The facility was first connected to the electrical grid in September 2013 before formally opening in February 2014, during which it was the world’s largest solar thermal power station. Ivanpah was developed by BrightSource Energy and Bechtel, with Google contributing $168 million towards its $2.2 billion in costs. Google no longer invests in the facility, however, due to the decline of the price of photovoltaic systems.

The facility has historically taken steps to avoid disrupting the natural wildlife, which includes desert tortoises. The effect of mirror glare on airplane pilots, water concerns, and collisions with birds has also been addressed by the operators of the installation.

According to Google, the image was larger than Central Park and could be seen a mile above sea level. The mirrors are all attached to a rotating mount that maneuvers the mirrors in order to create lighter and darker shades to make up the image.

The Apollo 11 mission, manned by Buzz Aldrin, Neil Armstrong, and Michael Collins, was the first to bring humans to the moon in 1969. Hamilton‘s role in the team included programming the in-flight software for all of NASA’s Apollo missions. She had also worked on satellite tracking software for the Air Force through Lincoln Lab (started by the Massachusetts Institute of Technology) and later joined the Charles Stark Draper Laboratory. It was, however, her work on creating computer systems to predict and track weather systems for use in anti-aircraft air defenses that made her a candidate for a lead developer role at NASA.

Continue reading “Reflecting On Margaret Hamilton: 50 Years After Apollo 11”

Neopixels Recreate Pinball Color Wheel That Never Was

With what pinball aficionados pay for the machines they so lovingly restore, it’s hard to imagine that these devices were once built to a price point. They had to make money, and whatever it took to attract attention and separate the customer from their hard-earned coins was usually included in the design. But only up to a point.

Take the 1967 Williams classic, “Magic City.” As pinball collector [Mark Gibson] explains it, the original design called for a rotating color filter behind a fountain motif in the back-glass, to change the color of the waters in an attractive way. Due to its cost, Williams never implemented the color wheel, so rather than settle for a boring fountain, [Mark] built a virtual color wheel with Neopixels. He went through several prototypes before settling on a pattern with even light distribution and building a PCB. The software is more complex than it might seem; it turns out to require a little color theory to get the transitions to look good, and it also provides a chance for a little razzle-dazzle. He implemented a spiral effect in code, and added a few random white sparkles to the fountain. [Mark] has a few videos of the fountain in action, and it ended up looking quite nice.

We’ve featured [Mark]’s pinball builds before, including his atomic pinball clock, We even celebrated his wizardry in song at one point.

Lessons Learned From An Art Installation Build

Art installations are an interesting business, which more and more often tend to include electronic or mechanical aspects to their creation. Compared to more mainstream engineering, things in this space are often done quite a bit differently. [Jan Enning-Kleinejan] worked on an installation called Prendre la parole, and shared the lessons learned from the experience.

The installation consisted of a series of individual statues, each with an LED light fitted. Additionally, each statue was fitted with a module that was to play a sound when it detected visitors in proximity. Initial designs used mains power, however for this particular install battery power would be required.

Arduinos, USB power banks and ultrasonic rangefinders were all thrown into the mix to get the job done. DFplayer modules were used to run sound, and Grove System parts were used to enable everything to be hooked up quickly and easily. While this would be a strange choice for a production design, it is common for art projects to lean heavily on rapid prototyping tools. They enable inexperienced users to quickly and effectively whip up a project that works well and at low cost.

[Jan] does a great job of explaining some of the pitfalls faced in the project, as well as reporting that the installation functioned near-flawlessly for 6 months, running 8 hours a day. We love to see a good art piece around these parts, and we’ve likely got something to your tastes – whether you’re into harmonicas, fungus, or Markov chains.

The Battery Is Part Of The Art

A work of art is appreciated for its own sake and we will never tire of seeing stunning circuits from microscopic dead-bugs to ornate brass sculptures. We also adore projects that share the tricks to use in our own work. Such is the case with [Jiří Praus] who made some jewelry and shared his templates so we try this out ourselves.

The materials include brass wire, solder, and surface-mount LEDs. Template design expects a 1206 light, so if you step outside that footprint, plan accordingly. The printable templates are intuitive and leverage basic wire jewelry making skills. Some good news is that flashing LEDs are available in that size so you can have an array of blinkenlights that appears random due to drifting circuits. Please be wary with RGB lights or mixing colors because red LEDs generally run at a lower voltage and they will siphon a significant chunk of a coin-cell’s power from a competing green or blue. How else can these be personalized?

[Jiří]’s charms are just the latest of circuits that capture our eyes and tickle our ears.

Wire Bender Aims To Take Circuit Sculptures To The Next Level

It doesn’t seem as though bending wire would be much of a chore, but when you’re making art from your circuits, it can be everything. Just the right angle in just the right place can make the difference between a circuit sculpture that draws gasps and one that’s only “Meh.”

[Jiří Praus] creates circuit sculptures that are about as far away from the “Meh” end of the spectrum as possible. And to help him make them even more spectacular, he has started prototyping a wire-bending machine to add precision to his bends. There’s no build log at the moment, but the video below shows progress to date. All the parts are 3D-printed, with two NEMA 17 steppers taking care of both wire feed and moving the bending head. It appears that the head has multiple slots for tools of different shapes. For now, the wire is rotated around its long axis manually, but another stepper could be added to take care of that job.

[Jiří] tells us that while he loves making circuit sculptures like his amazing mechanical tulip, he hates repeating himself. He hopes this bender will make repeat jobs a little less tedious and a lot more precise, and we hope he goes forward with the build so we get to see both it and more of his wonderful works of circuit art.

Continue reading “Wire Bender Aims To Take Circuit Sculptures To The Next Level”

AI And Art Appreciation

In 2019, using AI to evaluate artwork is finally more productive than foolish. We all hope that someday soon our Roomba will judge our living habits and give unsolicited advice on how we could spruce things up with a few pictures and some natural light. There is already an extensive amount of Deep Learning dedicated to photo recognition but a team in Croatia is adapting them for use on fine art. It makes sense that everything is geared toward cameras since most of us have a vast photographic portfolio but fine art takes longer to render. Even so, the collection on Wikiart.org is vast and already a hotbed for computer classification work, so they set to work there.

As they modify existing convolutional neural networks, they check themselves by comparing results with human ratings to keep what works and discard what flops. Fortunately, fine art has a lot of existing studies and commentary, whereas the majority of photographs in the public domain have nothing more than a file name and maybe some EXIF data. The difference here is that photograph-parsing AI can say, “That is a STOP sign,” while the fine art AI can say, “That is a memorable painting of a sign.” Continue reading “AI And Art Appreciation”

Art Project Analyzes Every Public Recording Of Facebook’s CEO Since 2004

[Benjamin Grosser] had a simple question: “What does Mark Zuckerberg think about?” The resulting art project is named ORDER OF MAGNITUDE and to create it he researched archives of every public utterance the founder and CEO of the world’s largest social media network has made, going as far back as 2004.

The end product is a nearly fifty-minute film consisting entirely of cuts centered around what [Benjamin] says are three of the Facebook CEO’s most favored and often-used terms:

  • The word “more”
  • The word “grow”
  • Metrics such as “ninety-nine percent”, “two million”, and terms of that nature.

The idea is that the resulting video provides insight into what Mark Zuckerberg thinks about, has focused on, and how that has (or has not) changed between 2004 and now.  How well does ORDER OF MAGNITUDE do that? Watch the video below, and judge for yourself.

Continue reading “Art Project Analyzes Every Public Recording Of Facebook’s CEO Since 2004”