A Tool For KiCad Board Renderings

If you’re producing documentation for a PCB project, you might as well make the board renders look good. But then, that’s a lot of work and you’re not an artist. Enter [Jan]’s new tool that takes KiCad board files, replaces each footprint with (custom) graphics, and provides a nice SVG representation, ready for labelling. If you like the output of a Fritzing layout, but have higher expectations of the PCB tool, this is just the ticket.

We all love [pighixx]’s pinout diagrams. Here’s his take on the Arduino Uno, for instance. It turns out that he does these largely by hand. That’s art for ya.

Sparkfun has taken a stab at replicating the graphical style for the pin labels, but then they toss in a photo of the real item. [Jan]’s graphic PCB generator fills in the last step toward almost putting [pighixx] out of a job. Get the code for yourself on GitHub.

An Interactive Oasis At Burning Man

An oasis in the desert is the quintessential image of salvation for the wearied wayfarer. At Burning Man 2016, Grove — ten biofeedback tree sculptures — provided a similar, interactive respite from the festival. Each tree has over two thousand LEDs, dozens of feet of steel tube, two Teensy boards used by the custom breath sensors to create festival magic.

Grove works like this: at your approach — detected by dual IR sensors — a mechanical flower blooms, meant to prompt investigation. As you lean close, the breath sensors in the daffodil-like flower detect whether you’re inhaling or exhaling, translating the input into a dazzling pulse of LED light that snakes its way down the tree’s trunk and up to the bright, 3W LEDs on the tips of the branches.

Debugging and last minute soldering in the desert fixed a few issues, before setup — no project is without its hiccups. The entire grove was powered by solar-charged, deep-cycle batteries meant to least from sunset to sunrise — or close enough if somebody forgot to hook the batteries up to charge.

Continue reading “An Interactive Oasis At Burning Man”

MIDI Drawings Paint With Piano Keyboards

Musician [Mari Lesteberg] is making music that paints pictures. Or maybe she’s making pictures that paint music. It’s complicated. Check out the video (embedded below) and you’ll see what we mean. The result is half Chinese scroll painting, and half musical score, and they go great together.

Lots of MIDI recorders/players use the piano roll as a model for input — time scrolls off to the side, and a few illuminated pixels represent a note played. She’s using the pixels to paint pictures as well: waves on a cartoon river make an up-and-down arpeggio. That’s a (musical) hack. And she’s not the only person making MIDI drawings. You’ll find a lot more on reddit.

Of course, one could do the same thing with silent pixels — just set a note to play with a volume of zero — but that’s cheating and no fun at all. As far as we can tell, you can hear every note that’s part of the scrolling image. The same can not be said for music of the black MIDI variety, which aims to pack as many notes into a short period of time as possible. To our ears, it’s not as beautiful, but there’s no accounting for taste.

It’s amazing what variations we’re seeing in the last few years on the ancient piano roll technology. Of course, since piano rolls are essentially punch-cards for musical instruments, we shouldn’t be too surprised that this is all possible. Indeed, we’re a little bit surprised that new artistic possibilities are still around. Has anyone seen punch-card drawings that are executable code? Or physical piano rolls with playable images embedded in them?

Continue reading “MIDI Drawings Paint With Piano Keyboards”

Creepy Speaking Neural Networks

Tech artist [Alexander Reben] has shared some work in progress with us. It’s a neural network trained on various famous peoples’ speech (YouTube, embedded below). [Alexander]’s artistic goal is to capture the “soul” of a person’s voice, in much the same way as death masks of centuries past. Of course, listening to [Alexander]’s Rob Boss is no substitute for actually watching an old Bob Ross tape — indeed it never even manages to say “happy little trees” — but it is certainly recognizable as the man himself, and now we can generate an infinite amount of his patter.

Behind the scenes, he’s using WaveNet to train the networks. Basically, the algorithm splits up an audio stream into chunks and tries to predict the next chunk based on the previous state. Some pre-editing of the training audio data was necessary — removing the laughter and applause from the Colbert track for instance — but it was basically just plugged right in.

The network seems to over-emphasize sibilants; we’ve never heard Barack Obama hiss quite like that in real life. Feeding noise into machines that are set up as pattern-recognizers tends to push them to the limits. But in keeping with the name of this series of projects, the “unreasonable humanity of algorithms”, it does pretty well.

He’s also done the same thing with multiple speakers (also YouTube), in this case 110 people with different genders and accents. The variation across people leads to a smoother, more human sound, but it’s also not clearly anyone in particular. It’s meant to be continuously running out of a speaker inside a sculpture’s mouth. We’re a bit creeped out, in a good way.

We’ve covered some of [Alexander]’s work before, from the wince-inducing “Robot Bites Man” to the intellectual-conceptual “All Prior Art“. Keep it coming, [Alexander]!

Continue reading “Creepy Speaking Neural Networks”

Light-Painting Robot Turns Any Floor Into Art

Is [SpongeBob SquarePants] art? Opinions will differ, but there’s little doubt about how cool it is to render a pixel-mapped time-lapse portrait of Bikini Bottom’s most famous native son with a roving light painting robot.

Inspired by the recent trend of long exposure pictures of light-adorned Roombas in darkened rooms, [Hacker House] decided to go one step beyond and make a lighted robot with less random navigational tendencies. A 3D-printed frame and wheels carries a pair of steppers and a Raspberry Pi. An 8×8 Neopixel matrix on top provides the light. The software is capable of rendering both simple vector images and rastering across a large surface to produce full-color images. You’ll notice the careful coordination between movement and light in the video below, as well as the impressive turn-on-a-dime performance of the rover, both of which make the images produced so precise.

We’ve covered a lot of light-painting videos before, including jiggering a 3D-printer and using a hanging plotter to paint. But we haven’t seen a light-painter with an essentially unlimited canvas before. We’d also love to see what two or more of these little fellows could accomplish working together.

Continue reading “Light-Painting Robot Turns Any Floor Into Art”

Morbid Battery Uses Blood Electrolyte

Building a battery out of common household products is actually pretty simple. All that is required is two dissimilar metals and some sort of electrolyte to facility the transfer of charge. A popular grade school science experiment demonstrates this fairly well by using copper and zinc plates set inside a potato or a lemon. Almost anything can be used as the charge transfer medium, as [dmitry] demonstrates by creating a rather macabre battery using his own blood.

The battery was part of an art and science exhibition but it probably wouldn’t be sustainable on a large scale, as it took [dmitry] around 18 months to bank enough blood to make a useful battery. Blood contains a lot of electrolytes that make it perfect for this application though, and with the addition of the copper anode and aluminum cathode [dmitry] can power a small speaker which plays a sound-generating algorithm that frankly adds a very surreal element to the art installation.

While we can’t recommend that you try to build one of these batteries on your own without proper medical supervision, the video of the art piece is worth checking out. We’ve seen a few other hacks that involve blood, but usually they are attempting to use it for its intended purpose rather than as an alternative energy source.

This Art Project’s Video Is Not A Time-Lapse

polarization-no-1-very-small

Artist Pe Lang uses linear polarization filters to create an unusual effect in his piece polarization | nº 1. The piece consists of a large number of discs made from polarizing film that partially overlap each other at the edges. Motors turn these discs slowly, and in the process the overlapping portions go from clear to opaque black and back again.

The disc rotation speed may be low but the individual transitions occur quite abruptly. Seeing a large number of the individual discs transitioning in a chaotic pattern — but at a steady rate — is a strange visual effect. About 30 seconds into the video there is a close up, and you can see for yourself that the motors and discs are all moving at a constant rate. Even so, it’s hard to shake the feeling of that one is watching a time-lapse. See for yourself in the video, embedded below.

Continue reading “This Art Project’s Video Is Not A Time-Lapse”