A white longtail cargo bike sits on grass with fenced-in planters behind it. The bike has a basket made of black metal tubes on the front and a passenger compartment behind the rider seat for children made of similar black metal tubes. A white canopy is above the passenger compartment and a solar panel sits atop the canopy.

Solar Powered E-bike Replaces Car Trips

E-bikes can replace car trips for some people, and adding a solar panel can make the fun last longer. [Luke] did some heavy modifications to his RadWagon to make it better, stronger, and faster than it was before.

The first step was replacing the stock 750 W controller with a 1500 W model to give the motor twice the power. [Luke] plans to replace the motor if it gets fried pushing too much juice, but is planning on just being careful for now. To stop this super-powered ride, he swapped the stock mechanical discs out for a hydraulic set which should be more reliable, especially when loading down this cargo bike.

On top of these performance enhancements, he also added a 50 W solar panel and maximum power point tracking (MPPT) charge controller to give the bike a potential 50% charge every day. Along with the OEM kid carrier and roof, this bike can haul kids and groceries while laughing at any hills that might come its way.

Checkout this other solar e-bike or this one making a trip around the world for more fun in the sun.

Smart Bike Suspension Tunes Your Ride On The Fly

Riding a bike is a pretty simple affair, but like with many things, technology marches on and adds complications. Where once all you had to worry about was pumping the cranks and shifting the gears, now a lot of bikes have front suspensions that need to be adjusted for different riding conditions. Great for efficiency and ride comfort, but a little tough to accomplish while you’re underway.

Luckily, there’s a solution to that, in the form of this active suspension system by [Jallson S]. The active bit is a servo, which is attached to the adjustment valve on the top of the front fork of the bike. The servo moves the valve between fully locked, for smooth surfaces, and wide open, for rough terrain. There’s also a stop in between, which partially softens the suspension for moderate terrain. The 9-gram hobby servo rotates the valve with the help of a 3D printed gear train.

But that’s not all. Rather than just letting the rider control the ride stiffness from a handlebar-mounted switch, [Jallson S] added a little intelligence into the mix. Ride data from the accelerometer on an Arduino Nano 33 BLE Sense was captured on a smartphone via Arduino Science Journal. The data was processed through Edge Impulse Studio to create models for five different ride surfaces and rider styles. This allows the stiffness to be optimized for current ride conditions — check it out in action in the video below.

[Jallson S] is quick to point out that this is a prototype, and that niceties like weatherproofing still have to be addressed. But it seems like a solid start — now let’s see it teamed up with an Arduino shifter.

Continue reading “Smart Bike Suspension Tunes Your Ride On The Fly”

High-Speed Sled Adds Bicycle Suspension

While you might have bought the best pair of skis in the 90s or 00s, as parts on boots and bindings start to fail and safety standards for ski equipment improve, even the highest-quality skis more than 15 or 20 years old will eventually become unsafe or otherwise obsolete. There are plenty of things that can be done with a pair of old skis, but if you already have a shot ski and an Adirondack chair made of old skis, you can put another pair to use building one of the fastest sleds we’ve ever seen.

[Josh Charles], the creator of this project, took inspiration from his father, who screwed an old pair of skis to the bottom of an traditional runner sled when he was a kid. This dramatically increased the speed of the sled, but eliminated its ability to steer. For this build [Josh] built a completely custom frame rather than re-use an existing sled, which allowed him to not only build a more effective steering mechanism for the skis, but also to use bicycle suspension components to give this sled better control at high speeds.

This build is part of a series that [Josh] did a few years ago, and you can find additional videos about it documenting his design process and his initial prototypes and testing. The amount of work he put into this build is evident when it’s seen finally traversing some roads that had been closed for winter; he easily gets the sled up in the 30 mph range several times. If you’re looking to go uphill in the snow, though, take a look at this powered snowboard instead.

Continue reading “High-Speed Sled Adds Bicycle Suspension”

TV personality and maker, Adam Savage, sits on a chair attached to a milk crate on wheels. It is situated inside an assortment of steel tubes forming the legs and body of a strandbeest walking machine.

Human-Powered Strandbeest

Once you’ve seen a strandbeest, it’s hard to forget the mesmerizing movement of its mechanical limbs. [Adam Savage] built a pedal-powered strandbeest in (more than) one day in full view of the public at the San Francisco Exploratorium.

One of the biggest challenges with building strandbeests is the sheer number of parts required to build a walking machine. It becomes clear rather quickly how big of an advantage the wheel is for part count on a device. Add in a few seemingly small design errors, and you might not have any forward motion at all.

[Savage]’s build takes us through all the ups and downs of this process, including lots of wrenching, welding, and more sneakers than Squitter the Spider could wear. The final product is unwieldy, impractical, and beautiful. What more could a maker ask for?

If you need more strandbeest goodness, check out this more practical strandbeest bicycle, this strandbeest Venus rover concept, or Jeremy Cook’s talk about designing strandbeest bots.

Continue reading “Human-Powered Strandbeest”

Developing An Open Source Bike Computer

While bicycles appear to have standardized around a relatively common shape and size, parts for these bikes are another story entirely. It seems as though most reputable bike manufacturers are currently racing against each other to see who can include the most planned obsolescence and force their customers to upgrade even when their old bikes might otherwise be perfectly fine. Luckily, the magic of open source components could solve some of this issue, and this open-source bike computer is something you’ll never have to worry about being forced to upgrade.

The build is based around a Raspberry Pi Zero in order to keep it compact, and it uses a small 2.7 inch LCD screen to display some common information about the current bike ride, including location, speed, and power input from the pedals. It also includes some I2C sensors including pressure and temperature as well as an accelerometer. The system can also be configured to display a map of the current ride as well thanks to the GPS equipment housed inside. It keeps a log in a .fit file format as well so that all rides can be archived.

When compared against a commercial offering it seems to hold up pretty well, and we especially like that it’s not behind a walled garden like other products which could, at any point, decide to charge for map upgrades (or not offer them at all). It’s a little more work to set up, of course, but worth it in the end. It might also be a good idea to pair it with other open source bicycle components as well.

Thanks to [Richard] for the tip!

A Bicycle Trailer Fit For Heavy Haulage

One of the problems of being a cyclist is that a bicycle just isn’t designed to carry much more than a human. You can get panniers and hang shopping bags from the handlebars, but sooner or later there’s a load which just doesn’t fit. At that point there’s only one way forward that involves staying on two wheels: find a bike trailer. If you fancy building one yourself, then there’s La Charette (French language, Google Translate link), an open-source three-wheeler design from France.

Construction is a sturdy welded box section tube spaceframe, with the single wheel at the front providing steering, and a towing bar attached to the seat post of the bicycle. Along with the impressive load capacity comes the problem of towing it, and for the cyclist with less-than-superhuman strength there’s the option of an electrically-driven front wheel. Stopping the whole thing is an essential feature with loads this size, and to that end there’s an inertial braking system operated by the force on the towing bar.

All in all it appears to be a useful trailer, albeit on the large side for storage when not being used. It’s certainly one of the larger bike trailers we’ve seen, though not perhaps the most stylish.

Thanks [Jeff] for the tip!

Snow Plowing By Bicycle

There are few challenges more difficult or dangerous than trying to get around the majority of North American cities by bicycle. Not only is the bicycle infrastructure woefully inadequate for safe travel (if it exists at all), but it’s often not maintained to any reasonable standard, either. This goes double in colder areas, where bike paths can essentially become abandoned in the winter after a snowfall. [Phil] found himself in this situation recently after a snowfall in western Canada and decided to DIY his own bike-powered snowplow to help keep his bike paths cleared.

The plow is built around an electric-assisted cargo bicycle, which is almost as rare in North America as bicycle infrastructure itself, but is uniquely suited to snowplow duty. It has a long wheelbase and a large front cargo area that can be weighed down if needed to ensure the plow makes good contact with the ground. The plow itself is built out of sections of plastic 55-gallon drums, which have been cut into two scooping sections and attached to the bike with a wooden 2×4 frame. The plow can be raised or lowered with a ratchet strap mechanism, and the plastic scoop skips over bumps in the path with relative ease.

With this relatively simple mechanism attached to his bike, [Phil] can make sure the trails that he frequents around Vancouver are more suitable for bike travel in the winter. Riding a bicycle through the winter, even in the coldest of climates, is not that difficult with the right support and investment in infrastructure, and this build is the best DIY solution we’ve seen to bicycle infrastructure support outside of adopting something like this remote-controlled snowblower to the job.

Continue reading “Snow Plowing By Bicycle”