Enormous Metal Sculpture Becomes An Antenna

Those who have worked with high voltage know well enough that anything can be a conductor at high enough voltages. Similarly, amateur radio operators will jump at any chance to turn a random object into an antenna. Flag poles, gutters, and even streams of water can be turned into radiating elements for a transmitter, but the members of this amateur radio club were thinking a little bit bigger when they hooked up their transmitter to this giant sculpture.

For those who haven’t been to the Rochester Institute of Technology (RIT) in upstate New York, the enormous metal behemoth is not a subtle piece of artwork and sits right at the entrance to the university. It’s over 70 feet tall and made out of bronze and steel, a dream for any amateur radio operator. With the university’s permission and some help to ensure everyone’s safety during the operation, the group attached a feedline to the sculpture with a magnet, while the shield wire was attached to a ground rod nearby. A Yaesu FT-991 running on only 5 watts and transmitting in the 20-meter band was able to make contacts throughout much of the eastern United States with this setup.

This project actually started as an in-joke within the radio club, as reported by Reddit user [bbbbbthatsfivebees] who is a member. Eventually the joke became reality, as the sculpture is almost a perfect antenna for certain ham bands. Others in the comments noted that they might have better luck with lower frequency bands such as the 40-meter band or possibly the 60-meter band, due to the height of the structure. And, for those who are still wondering if you really can use a stream of water to transmit radio waves, it is indeed possible.

Antenna Hidden In Holiday Lights Skirts HOA Rules

For all their supposed benefits, homeowner’s associations (HOAs) have a reputation of quickly turning otherwise quaint neighborhoods into a sort of Stanford prison experiment, as those who get even the slightest amount of power often abuse it. Arbitrary rules and enforcement abound about house color, landscaping, parking, and if you’ve ever operated a radio, antennas. While the FCC (at least as far as the US is concerned) does say that HOAs aren’t permitted to restrict the use of antennas, if you don’t want to get on anyone’s bad side you’ll want to put up an antenna like this one which is disguised as a set of HOA-friendly holiday lights.

For this build, a long wire is hidden along with a strand of otherwise plain-looking lights. While this might seem straightforward at first, there are a few things that need to be changed on the lighting string in order to make both the antenna and the disguise work. First, the leads on each bulb were removed to to prevent any coupling from the antenna into the lighting string. Clipping the leads turns what is essentially a long wire that might resonate with the antenna’s frequency into many short sections of wire which won’t have this problem. This also solves the problem of accidentally illuminating any bulbs when transmitting, as the RF energy from the antenna could otherwise transfer into the lighting string and draw attention from the aforementioned HOA.

Tests of this antenna seemed to show surprising promise while it was on the ground, but when the string and antenna was attached to the roof fascia the performance dropped slightly, presumably because of either the metal drip edge or the gutters. Still, the antenna’s creator [Bob] aka [HOA Ham] had excellent success with this, making clear contacts with other ham radio operators hundreds of miles away. We’ve shared another of [Bob]’s HOA-friendly builds below as well which hides the HF antenna in the roof’s ridge vent, and if you’re looking for other interesting antenna builds take a look at this one which uses a unique transformer to get wide-band performance out of an otherwise short HF antenna.

Continue reading “Antenna Hidden In Holiday Lights Skirts HOA Rules”

Hunting For Space Pirates

Ever since the first artificial satellite was launched into orbit, radio operators around the world have been tuning in to their space-based transmissions. Sputnik 1 only sent back pulses of radio waves, but in the decades to follow ever more advanced radio satellites were put into service that could support two-way communications from Earth to space and back again.

Some of these early satellites were somewhat lacking in security, though, and have been re-purposed by various pirates around the world for their own ends. [Gabe] aka [saveitforparts] is here to show us how to hunt for those pirates and listen in on their radio traffic.

Pirates on these satellites have typically used them for illicit activities, and it is still illegal to use them for non-governmental or non-military purposes, so [Gabe] notes that he will only be receiving, not transmitting. The signals he is tuning in to are VHF transmissions, specifically around 220 MHz. That puts them easily within the reach of the RTL-SDR and common ham radio equipment, but since they are coming from space a more directional antenna is needed. [Gabe] quickly builds a Yagi antenna from scrap, tuned specifically to 255 MHz, and mounts it to an old remote-controlled security camera mount which allows him to point it exactly at the satellite and monitor transmissions.

From there he is able to pick up what looks like a few encrypted and/or digital transmissions, plus analog transmissions of likely pirates speaking a language he guesses to be Portuguese. He also hears what he thinks is a foreign TV broadcast, but oddly enough turns out to be NPR. These aren’t the only signals in space to tune to, either. There are plenty of purpose-built ham radio satellites available for any licensed person to use, and we’ve also seen this other RTL-SDR configured to snoop on Starlink signals.

Continue reading “Hunting For Space Pirates”

A Linux Distro For All Your Ham Needs

For anyone new to the world of ham radio, one of the things that takes a little getting used to is visiting the websites of authoritative experts in various fields and feeling like you’ve traveled back to the Internet of 1999. As a hobby that lends itself to extremely utilitarian amateurs, the software side can feel a little left behind like that. [Andy] aka [KB1OIQ], on the other hand, is also a Linux enthusiast and has been putting together a complete Linux distribution with everything needed to operate a radio in the modern era.

While most ham radio software seems to be developed for Windows, there is a lot available for Linux. It just takes a bit of tinkering and experimentation to get everything configured just right. Andy’s Ham Radio Linux, or AHRL, takes a lot of the guesswork out of this. The distribution includes everything from contact logging software to antenna modeling, propagation forecasting, and electronic design. While tools like this are largely optional for operating radios themselves, there are also tools included to allow the user to operate various digital modes as well, which require some sort of computer interface to use.

The other design consideration [Andy] made was something that most hams consider when choosing software, which is that it should be able to run on extremely modest hardware. To that end, the distribution is based around Xubuntu and can run on ten-year-old machines with as little as 2 GB of RAM. And, for those interested more in software-defined radio specifically, there is another Debian-based Linux distribution called DragonOS that we’ve featured a few other times as well which is also worth checking out.

Continue reading “A Linux Distro For All Your Ham Needs”

Translating And Broadcasting Spoken Morse Code

When the first radios and telegraph lines were put into service, essentially the only way to communicate was to use Morse code. The first transmitters had extremely inefficient designs by today’s standards, so this was more a practical limitation than a choice. As the technology evolved there became less and less reason to use Morse to communicate, but plenty of amateur radio operators still use this mode including [Kevin] aka [KB9RLW] who has built a circuit which can translate spoken Morse code into a broadcasted Morse radio signal.

The circuit works by feeding the signal from a microphone into an Arduino. The Arduino listens for a certain threshold and keys the radio when it detects a word being spoken. Radio operators use the words “dit” and “dah” for dots and dashes respectively, and the Arduino isn’t really translating the words so much as it is sending a signal for the duration of however long each word takes to say. The software for the Arduino is provided on the project’s GitHub page as well, and uses a number of approaches to make sure the keyed signal is as clean as possible.

[Kevin] mentions that this device could be used by anyone who wishes to operate a radio in this mode who might have difficulty using a traditional Morse key and who doesn’t want to retrain their brain to use other available equipment like a puff straw or a foot key. The circuit is remarkably straightforward for what it does, and in the video below it seems [Kevin] is having a blast using it. If you’re still looking to learn to “speak” Morse code, though, take a look at this guide which goes into detail about it.

Thanks to [Dragan] for the tip!

Continue reading “Translating And Broadcasting Spoken Morse Code”

Hackaday Links Column Banner

Hackaday Links: December 25, 2022

Looks like it’s lights out on Mars for the InSight lander. The solar-powered lander’s last selfie, sent back in April, showed a thick layer of dust covering everything, including the large circular solar panels needed to power the craft. At the time, NASA warned that InSight would probably give up the ghost sometime before the end of the year, and it looks like InSight is sticking to that schedule. InSight sent back what might be its last picture recently, showing the SEIS seismic package deployed on the regolith alongside the failed HP3 “mole” experiment, which failed to burrow into the soil as planned. But one bad experiment does not a failed mission make — it was wildly successful at most everything it was sent there to do, including documenting the largest marsquake ever recorded. As it usually does, NASA has anthropomorphized InSight with bittersweet sentiments like “Don’t cry, I had a good life,” and we’re not quite sure how we feel about that. On the one hand, it kind of trivializes the engineering and scientific accomplishments of the mission, but then again, it seems to engage the public, so in the final rinse, it’s probably mostly harmless.

Continue reading “Hackaday Links: December 25, 2022”

Getting To The Heart Of A Baofeng

In amateur radio circles, almost no single piece of equipment serves as more of a magnet for controversy than the humble Baofeng handheld transceiver. It’s understandable — the radio is a shining example of value engineering, with just enough parts to its job while staying just on the edge of FCC rules. And at about $25 a pop, the radios are cheap enough that experimentation is practically a requirement of ownership.

But stripped down as the Baofeng may be, it holds secrets inside that are even more tempting to play with than the radio itself. And who better than [HB9BLA], a guy who has a suspiciously familiar Swiss accent, to guide us through the RF module at the heart of the Baofeng, the SA818. For about $8 you can get one of these little marvels off AliExpress and have nearly all the important parts of a VHF or UHF radio — an SDR transceiver, a power amp, and all the glue logic to make it work.

In the video below, [Andreas] puts the SA818 module through its paces with the help of a board that pairs the module with a few accessories, like an audio amp and a low-pass RF filter. With a Raspberry Pi and a Python library to control the module, it’s a decent imitation of the functionality of a Baofeng. But that’s only the beginning. By adding a USB sound card to the Pi, the setup was able to get into every ham’s favorite packet radio system, APRS. There are a ton of other applications for the SA818 modules, some of which [Andreas] mentions at the end of the video. Pocket-sized repeaters, a ridiculously small EchoLink hotspot, and even an AllStar node in an Altoids tin.

Of course, if you want to get in on the fun, you’re going to need an amateur radio license. Don’t worry, it’s easy — we’ll help you get there.

Continue reading “Getting To The Heart Of A Baofeng”