Oscillon by Ben F. Laposky

Early Computer Art From The 1950s And 1960s

Modern day computer artist, [Amy Goodchild] surveys a history of Early Computer Art from the 1950s and 1960s. With so much attention presently focused on AI-generated artwork, we should remember that computers have been used to created art for many decades.

Our story begins in 1950 when Ben Laposky started using long exposure photography of cathode ray oscilloscopes to record moving signals generated by electronic circuits. In 1953, Gordon Pask developed the electromechanical MusiColor system. MusiColor empowered musicians to control visual elements including lights, patterns, and motorized color wheels using sound from their instruments. The musicians could interact with the system in real-time, audio-visual jam sessions.

In the early 1960s, BEFLIX (derived form Bell Flix) was developed by Ken Knowlton at Bell Labs as a programming language for generating video animations. The Graphic 1 computer featuring a light pen input device was also developed at Bell Labs. Around the same timeframe, IBM introduced novel visualization technology in the IBM 2250 graphics display for its System/360 computer. The 1967 IBM promotional film Frontiers in Computer Graphics demonstrates the capabilities of the system.

Continue reading “Early Computer Art From The 1950s And 1960s”

Scorched Moon: Secret Project A119

In today’s world, it is hard to realize how frightened Americans were at the news of Sputnik orbiting the Earth. Part of it was a fear of what a rival nation could do if they could fly over your country with impunity. Part of it was simply fear generated by propaganda. While America won the race to the moon, that wasn’t clear in the 1950s. The Soviet Union was ahead in the ability to deliver bombs using planes and missiles. They launched Sputnik on a modified ICBM, while American attempts to do the same failed spectacularly. The Air Force wanted ideas about how to respond to Sputnik, and one of the most disturbing ones was project A119, a project we were reminded of recently by a BBC post.

In all fairness, the Soviets had an almost identical plan, code-named E4. Fortunately, both sides eventually realized these plans weren’t a good idea. Oh, did we forget to mention that A119 and E4 were plans to detonate a nuclear device on the moon?

Continue reading “Scorched Moon: Secret Project A119”

A History Of NASA Supercomputers, Among Others

The History Guy on YouTube has posted an interesting video on the history of the supercomputer, with a specific focus on their use by NASA for the implementation of computational fluid dynamics (CFD) models of aeronautical assemblies.

The aero designers of the day were quickly finding out the limitations of the wind tunnel testing approach, especially for so-called transonic flow conditions. This occurs when an object moving through a fluid (like air can be modeled) produces regions of supersonic flow mixed in with subsonic flow and makes for additional drag scenarios. This severely impacts aircraft performance. Not accounting for these effects is not an option, hence the great industry interest in CFD modeling. But the equations for which (usually based around the Navier-Stokes system) are non-linear, and extremely computationally intensive.

Obviously, a certain Mr. Cray is a prominent player in this story, who, as the story goes, exhausted the financial tolerance of his employer, CDC, and subsequently formed Cray Research Inc, and the rest is (an interesting) history. Many Cray machines were instrumental in the development of the space program, and now adorn computing museums the world over. You simply haven’t lived until you’ve sipped your weak lemon drink whilst sitting on the ‘bench’ around an early Cray machine.

You see, supercomputers are a different beast from those machines mere mortals have access to, or at least the earlier ones were. The focus is on pure performance, ideally for floating-point computation, with cost far less of a concern, than getting to the next computational milestone. The Cray-1 for example, is a 64-bit machine capable of 80 MIPS scalar performance (whilst eating over 100 kW of juice), and some very limited parallel processing ability.

While this was immensely faster than anything else available at the time, the modern approach to supercomputing is less about fancy processor design and more about the massive use of parallelism of existing chips with lots of local fast storage mixed in. Every hacker out there should experience these old machines if they can, because the tricks they used and the lengths the designers went to get squeeze out every ounce of processing grunt, can be a real eye-opener.

Want to see what happens when you really push out the boat and use the whole wafer for parallel computation? Checkout the Cerberus. If your needs are somewhat less, but dabbling in parallel computing gets you all pumped, you could build a small array out of Pine64s. Finally, the story wouldn’t be complete without talking about the life and sad early demise of Seymour Cray.
Continue reading “A History Of NASA Supercomputers, Among Others”

Riding The Rails By Ebike

As most developed countries around the world continue to modernize their transportation infrastructure with passenger rail, countries in North America have been abandoning railroads for over a century now, assuming that just one more lane will finally solve their traffic problems. Essentially the only upside to the abandonment of railroads has been that it’s possible to build some unique vehicles to explore these tracks and the beautiful yet desolate areas they reach, and [Cam Engineering] is using an ebike to do that along the coast of central California.

Continue reading “Riding The Rails By Ebike”

Vintage Tektronix Virtual Graticule

Oscilloscopes are great for measuring the time and voltage information of a signal. Some old scopes don’t have much in the way of markings on the CRT, although eventually, we started seeing scales that allowed you to count squares easily. Early scopes had marks on the glass or plastic over the CRT, but as [Vintage TEK Museum] points out, this meant for best accuracy, you had to look directly at the CRT. If you were at an angle horizontally or vertically, the position of the trace would appear to move concerning the lines on the screen. You can see the effect in the video below.

The simple solution was to mark directly into the phosphor, which minimized the effect. Before that was possible, [Bob Anderson] invented a clever solution, although Tektronix didn’t produce any scopes using it for some reason. The idea was the virtual oscilloscope graticule, and it was quite clever.

The idea was to put the graticule on a semi-reflective mirror. Looking through the assembly, you would actually see the trace and the reflection of the graticule in the mirror. The resulting image is perfectly aligned if the assembly is constructed properly. You can, at some angles, see both the front and reflected graticules.

According to the video, management was not impressed because someone other than [Anderson] showed a poor-quality prototype to them. By 1962, the graticule in the phosphor took over, and there was no need for [Anderson’s] clever invention.

These days, a graticule is just bits on the screen. Even if you roll your own.

Continue reading “Vintage Tektronix Virtual Graticule”

Measuring A Millisecond Mechanically

If you are manufacturing something, you have to test it. It wouldn’t do, for example, for your car to say it was going 60 MPH when it was really going 90 MPH. But if you were making a classic Leica camera back in the early 20th century, how do you measure a shutter that operates at 1/1000 of a second — a millisecond — without modern electronics? The answer is a special stroboscope that would look at home in any cyberpunk novel. [SmarterEveryDay] visited a camera restoration operation in Finland, and you can see the machine in action in the video below.

The machine has a wheel that rotates at a fixed speed. By imaging a pattern through the camera, you can determine the shutter speed. The video shows a high-speed video of the shutter operation which is worth watching, and it also explains exactly how the rotating disk combined with the rotating shutter allows the measurement. Continue reading “Measuring A Millisecond Mechanically”

Exploring The History Of EPROM In The Soviet Union

An article on the history of EPROMs in the Soviet Union by [Vladimir Yakovlev] over at The CPU Shack Museum caught our attention. It is part one of a series on the topic, and walks you through the earliest Soviet EPROMs families.

Early EPROM programmer using punched paper tape (Intel, Electronics Magazine 1971)

The first of which, from the 1970s, is the K505RR1 developed and manufactured in Kyiv, equivalent to the first-generation Intel 1702A. It could hold 2048 bits, organized as 256×8, and offered a whopping 20 reprogramming cycles and data retention of 5000 hours.

The narrative proceeds to introduce several subsequent generations, design facilities, manufacturing techniques, and representative chip examples. A few tidbits — unlike Western EPROMs, the Soviets managed to put quartz windows in plastic packages (see the KP573 family).

In addition to the common gray or white, they also used different terracotta colored ceramic packages. An odd ceramic flat-pack EPROM is shown, and also some EPROMs whose dies have been painted over and re-badged as OTP chips.

Intel began producing EPROMs in 1971 as reported by the inventor, Intel’s Dov Frohman-Bentchkowsky, in Electronics Magazine’s 10 May edition¬†(pg 91). We learned, amongst other things, that the 1701 did not have a quartz window, but could still be¬†erased by exposure to X-rays. A friendly word of warning — browsing electronics advertisements from 50 years ago can easily consume your entire morning.

Once the package is sealed, information can still be erased by exposing it to X radiation in excess of 5×104 rads, a dose which is easily attainable with commercial X-ray generators.

To dig deeper, check out the CPU Shack’s write-up on the history of EPROMs in general, and a piece we wrote in 2014 about the history of home computers behind the Iron Curtain.