Wearable Superconductors

What do you do with a discarded bit of superconducting wire? If you’re [Patrick Adair], you turn it into a ring.

Superconducting wire has been around for decades now. Typically it is a thick wire made up of strands of titanium and niobium encased in copper. Used sections of this wire show up on the open market from time to time. [Patrick] got ahold of some, and with his buddies at the waterjet channel, they cut it into slices. It was then over to the lathe to shape the ring.

Once the basic shape was created, [Patrick] placed the ring in ferric chloride solution — yes the same stuff we use to etch PC boards. The ferric chloride etched away just a bit of the copper, making the titanium niobium sections stand out. A trip through the rock tumbler put the final finish on the ring. [Patrick] left the ring in bare metal, though we would probably add an epoxy or similar coating to keep the copper from oxidizing.

[Patrick] is selling these rings on his website, though at $700 each, they’re not cheap. Time to hit up the auction sites and find some superconducting wire sections of our own!

If you’re looking to make rings out of more accessible objects, check out this ring made from colored pencils, or this one made from phone wire.

Tiny LED Earrings Are A Miniaturization Tour De Force

Light up jewelry is nothing new – we see wearables all the time here. But home brew, self-contained, programmable LED earrings that are barely larger than the watch batteries which power them? That’s something worth looking into.

assembly5Settle back and watch [mitxela]’s miniature wizardry in the video below, but be forewarned: it runs 36 minutes. Most of the video is necessarily shot through a microscope where giant fingers come perilously close to soldering iron and razor blade.

The heart of the project is an ATtiny9, a six-legged flea of a chip. The flexible PCB is fabricated from Pyralux, which is essentially copper-clad Kapton tape. [Mitxela] etched the board after removing spray-paint resist with a laser engraver – an interesting process in its own right.

After some ridiculously tedious soldering, the whole circuit wraps around a CR927 battery and goes into a custom aluminum and polypropylene case, which required some delicate turning. Hung from off-the-shelf ear hooks, the 12 multiplexed LEDs flash fetchingly and are sure to attract attention, especially of those who know Morse.

This isn’t exactly [mitxela]’s first tiny rodeo, of course. We’ve featured his work many times, including a Morse code USB keyboardthe world’s smallest MIDI synthesizer, and the world’s smallest MIDI synthesizer again.

Continue reading “Tiny LED Earrings Are A Miniaturization Tour De Force”

Lifting The Secret Of The Wooden Rings

Making beautiful things from epoxy and wood happens to be [Peter Brown’s] area of expertise. He was recently quested with reverse engineering the ring design of the Canadian manufacturer secret wood — a unique combination of splintered wood and epoxy — and achieved impressive results.

Continue reading “Lifting The Secret Of The Wooden Rings”

[Cody] Takes Us From Rock To Ring

[Cody Reeder] had a problem. He wanted to make a ring for his girlfriend [Canyon], but didn’t have enough gold. [Cody and Canyon] spent some time panning for the shiny stuff last summer. Their haul was only about 1/3 gram though. Way too small to make any kind of jewelry. What to do? If you’re [Cody], you head up to your silver mine, and pick up some ore. [Cody] has several mines on his ranch in Utah. While he didn’t go down into the 75 foot deep pit this time, he did pick up some ore his family had brought out a few years back. Getting from ore to silver is a long process though.

splattersFirst, [Cody] crushed the rock down to marble size using his homemade rock crusher. Then he roasted the rock in a tire rim furnace. The ore was so rich in lead and silver that the some of the metal just dropped right out, forming splatters on the ground beneath the furnace. [Cody] then ball milled the remaining rock to a fine powder and panned out the rest of the lead. At this point the lead and silver were mixed together. [Cody] employed Parks process to extract the silver. Zinc was added to the molten lead mixture. The silver is attracted to the zinc, which is insoluble in lead. The result is a layer of zinc and silver floating above the molten lead. Extracting pure silver is just a matter of removing the zinc, which [Cody] did with a bit of acid.

Cody decided to make a silver ring for [Canyon] with their gold as the stone. He used the lost wax method to create his ring. This involves making the ring from wax, then casting that wax in a mold. The mold is then heated, which burns out the wax. The result is an empty mold, ready for molten metal.

The cast ring took a lot of cleanup before it was perfect, but the results definitely look like they were worth all the work.

Continue reading “[Cody] Takes Us From Rock To Ring”

Jewelry Meets Carpentry With Bentwood Rings

[Dorkyducks] is a bit of a jeweler, a bit of a carpenter, and a bit of a hacker.  They’ve taken some time to document their technique for making bentwood rings. Bentwood is technique of wetting or steaming wood, then bending or forming it into new shapes. While the technique is centuries old, this version gets a bit of help from a modern heat source: The microwave oven. [Dorkyducks] starts with strips of veneer, either 1/36″ or 1/42″ thick. The veneer is cut into strips 1/2″ wide by about 12″ long, wrapped in a wet paper towel, and microwaved. The microwaveglue-roll heats the water in the towel, steaming it into the wood. This softens the wood fibers, making the entire strip flexible. The softened wood is then wrapped around a wooden preform dowel and allowed to dry for a day or two.

Once dry, the wood will hold the circular shape of the dowel. [Dorkyducks] then uses masking tape to tack the wood down to a new dowel which is the proper ring size for the wearer. Then it’s a superglue and wrapping game. The glue holds the laminated veneer together, and gives the ring it’s strength. From there it’s sanding, sanding, sanding. At this point, the ring can be shaped, and inlays added. [Dorkyducks] shows how to carve a ring and insert a gemstone in this gallery. The final finish is beeswax and walnut oil, though we’d probably go for something a bit longer lasting – like polyurethane.

Building A Business Around Generative Design And Marvels Of 3D Printing

Generative design is a method of creating something by feeding seed data into an algorithm. It might be hard at first to figure out how someone would build a business around this, but that’s exactly what Nervous System has been doing with great success. The secret is not only in the algorithm, but in how they’re bringing it to life.

Continue reading “Building A Business Around Generative Design And Marvels Of 3D Printing”

Hackaday Links: May 11, 2014

hackaday-links-chain

North Korean drones! Yes, your local hobby shop has the same aerial reconnaissance abilities as North Korea. Props to Pyongyang for getting v-tail mixing down.

There’s nothing quite as satisfying as the look of a well laid out resistor array, and the folks at Boldport have taken this to a new level. It’s an art piece, yes, but these would make fabulous drink coasters.

Here’s something even more artistic. [cpurola] found a bunch of cerdip EPROMs and bent the pins in a weird chainmaille-esque way. The end result is an EPROM bracelet, just in time for mother’s day. It’s a better use for these chips than tearing them apart and plundering them for the few cents worth of gold in each.

[John] still uses his original Xbox for xmbc, but he’d like to use the controllers with his computer. He never uses the third and fourth controller ports, so he stuck those in his computer. It’s as simple as soldering the controller port module to a connector and plugging it into an internal USB port. Ubuntu worked great, but Windows required XBCD.

[Kerry] has modified an FT232 USB/UART thingy as an Arduino programmer before. The CP2102 USB/UART is almost as popular on eBay, a little less expensive, and equally suited for ‘duino programming. It requires desoldering a resistor and soldering a jumper on a leadless package, but with a fine solder tip, it’s not too bad.