Shoelace-Tying Robot With Only Two Motors

Many things that humans do are very difficult for machines. Case in point: tying shoelaces. Think of the intricate dance of fingers crossing over fingers that it takes to pass off a lace from one hand to the other. So when a team of five students from UC Davis got together and built a machine that got the job done with two hooks, some very clever gears, and two motors, we have to say that we’re impressed. Watch it in action on Youtube (also embedded below).

The two-motor constraint would seem at first to be a show-stopper, but now that we’ve watched the video about a hundred times, we’re pretty convinced that a sufficiently clever mechanical engineer could do virtually anything with two motors and enough gears. You see, the secret is that one motor is dedicated to moving a drive gear back and forth to multiple destinations, and the other motor provides the power.

This being Hackaday, I’m sure that some of you are saying “I could do that with one motor!” Consider that a challenge.

Meanwhile, if you need to see more gear-porn, check out this hummingbird automaton. Or for the miracles of cam-driven machines, check out [Fran Blanche]’s work with the Maillardet Automaton.

Continue reading “Shoelace-Tying Robot With Only Two Motors”

Talking To Alexa With Sign Language

As William Gibson once noted, the future is already here, it just isn’t equally distributed. That’s especially true for those of us with disabilities. [Abishek Singh] wanted to do something about that, so he created a way for the hearing-impaired to use Amazon’s Alexa voice service. He did this using a TensorFlow deep learning network to convert American Sign Language (ASL) to speech and a speech-to-text converter to interpret the response. This all runs on a laptop, so it should work with any voice interface with a bit of tweaking. In particular, [Abishek] seems to have created a custom bit of ASL to trigger Alexa. Perhaps the next step would be to use a robotic arm to create the output directly in ASL and cut out the Echo device completely? [Abishek] has not released the code for this project yet, but he has released the code for other projects, such as Peeqo, the robot that responds with GIFs.

[Via FlowingData and [Belg4mit]]

Continue reading “Talking To Alexa With Sign Language”

DIY Coil Winding Machine Counts The Hacky Way

“Wait, was that 423 or 424?” When you’re stuck winding a transformer or coil that has more than a few hundred turns, you’re going to want to spend some time on a winding jig. This video, embedded below, displays a simple but sufficient machine — with a few twists.

The first elaboration is the addition of a shuttle that moves back and forth in sync with the main spindle to lay the windings down nice and smooth. Here, it’s tremendously simple — a piece of threaded rod and a set of interchangeable wheels that are driven by a big o-ring belt. We love the low-tech solution of simply adding a twist into the belt to swap directions. We would have way overthought the mechanism.

But then the hack is the digital counter made out of an old calculator. We’ve seen this before, of course, but here’s a great real-world application.

Thanks [Jānis] for the tip!

Continue reading “DIY Coil Winding Machine Counts The Hacky Way”

Blinging Up A Scope: Scale Your Divisions In Style

When a hacker owns an oscilloscope, it’s more than a possession. Weary nights are spent staring at the display, frantically twiddling the dials to coax out vital information. Over time, a bond is formed – and only the best will do for your scope. So why settle for the stock plastic dials when you could go for gold? Well in case you hadn’t noticed, we’re partial to a bit of over-engineering here at Hackaday, and [AvE] has upgraded his Rigol scope by adding metal knobs.

Employing his usual talent in the shop, [AvE] first turns the basic knob shapes from the stock, before drilling them and milling the outer texture pattern at an angle. Voilà: six custom knobs for 100% more torque and traction control. No matter how trivial the project, it’s always good to watch him at work. This [AvE] video doesn’t come with the usual fruity language warning; instead this build is set to the swelling tones of Beethoven. “Less Talk – More Action!” says the title, but we have to say that we miss his quips. That said, he still manages to deliver his signature humour through action alone.

For some slightly more functional oscilloscope upgrades, you can read about adding a hybrid touchscreen interface, or hacking a Rigol scope’s software to unlock greater bandwidth, storage depth and more.

Continue reading “Blinging Up A Scope: Scale Your Divisions In Style”

3D-Printed Punch And Die Stand Up To Steel

When you think of machine tooling, what comes to mind might be an endmill made of tungsten carbide or a punch and die made of high-speed steel. But surely there’s no room in the machine tool world for 3D-printed plastic tools, especially for the demanding needs of punching parts from sheet metal.

As it turns out, it is possible to make a 3D-printed punch and die set that will stand up to repeated use in a press brake. [Phil Vickery] decided to push the tooling envelope to test this, and came away pleasantly surprised by the results. In fairness, the die he used ended up being more of a composite between the carbon-fiber nylon filament and some embedded metal to reinforce stress points in the die block. It looks like the punch is just plastic, though, and both were printed on a Markforged Mark 2, a printer specifically designed for high-strength parts. The punch and die set were strong enough to form 14-gauge sheet steel in a press brake, which is pretty impressive. The tool wasn’t used to cut the metal; the blanks were precut with a laser before heading to the press. But still, having any 3D-printed tool stand up to metal opens up possibilities for rapid prototyping and short production runs.

No matter what material you make your tooling out of, there’s a lot to know about bending metal. Check out the basics in our guide to the art and science of bending metal.

Continue reading “3D-Printed Punch And Die Stand Up To Steel”

Smooth And Steady Cuts With An Improvised Power Feeder

Some woodworking operations require stock to be fed at a smooth, steady rate, for which purpose a power feeder is usually employed. They’re expensive bits of gear, though, and their cost can usually be borne only by high-output production shops. But when you need one, you need one, and hacking a power feeder from a drill and a skate wheel is a viable option.

It should come as no surprise that this woodshop hack comes to us from [Matthias Wandel], who never seems to let a woodworking challenge pass him by. His first two versions of expedient power feeders were tasked with making a lot of baseboard moldings in his new house. Version three, presented in the video below, allows him to feed stock diagonally across his table saw, resulting in custom cove moldings. The completed power feeder may look simple — it’s just a brushless drill in a wooden jig driving a skate wheel — but the iterative design process [Matthias] walks us through is pretty fascinating. We also appreciate the hacks within hacks that always find their way into his videos. No lathe? No problem! Improvise with a drill and a bandsaw.

Surprised that [Matthias] didn’t use some of his famous wooden gears in this build? We’re not. A brushless motor is perfect for this application, with constant torque at low speeds. Want to learn more about BLDC motors? Get the basics with a giant demo brushless motor.

Continue reading “Smooth And Steady Cuts With An Improvised Power Feeder”

Making A Gun Without A 3D Printer

Around four years ago the world was up in arms over the first gun to be 3D printed. The hype was largely due to the fact that most people don’t understand how easy it is to build a gun without a 3D printer. To that end, you don’t even need access to metal stock, as [FarmCraft101] shows us with this gun made out of melted aluminum cans.

The build starts off by melting over 200 cans down into metal ingots, and then constructing a mold for the gun’s lower. This is the part that is legally regulated (at least in the US), and all other parts of a gun can be purchased without any special considerations. Once the aluminum is poured into the mold, the rough receiver heads over to the machine shop for finishing.

This build is fascinating, both from a machinist’s and blacksmith’s point-of-view and also as a reality check for how easy it is to build a firearm from scratch provided the correct tools are available. Of course, we don’t need to worry about the world being taken over by hoards of angry machinists wielding unlicensed firearms. There’s a lot of time and effort that goes into these builds and even then they won’t all be of the highest quality. Even the first 3D printed guns only fired a handful of times before becoming unusable, so it seems like any homemade firearm, regardless of manufacturing method, has substantial drawbacks.

Thanks to [Rey] for the tip!

Continue reading “Making A Gun Without A 3D Printer”