An IPhone Case Study

Way back in 2008, Apple unveiled the first unibody Macbook with a chassis milled out of a single block of aluminum. Before that, essentially all laptops, including those from Apple, were flimsy plastic screwed together haphazardly on various frames. The unibody construction, on the other hand, finally showed that it was possible to make laptops that were both lightweight and sturdy. Apple eventually began producing iPhones with this same design style, and with the right tools and a very accurate set of calipers it’s possible to not only piece together the required hardware to build an iPhone from the ground up but also build a custom chassis for it entirely out of metal as well.

The first part of the project that [Scotty] from [Strange Parts] needed to tackle was actually getting measurements of the internals. Calipers were not getting the entire job done so he used a flatbed scanner to take an image of the case, then milled off a layer and repeated the scan. From there he could start testing out his design. After an uncountable number of prototypes, going back to the CAD model and then back to the mill, he eventually settles into a design but not before breaking an iPhone’s worth of bits along the way. Particularly difficult are the recessed areas inside the phone, but eventually he’s able to get those hollowed out, all the screw holes tapped, and then all the parts needed to get a working iPhone set up inside this case.

[Scotty] has garnered some fame not just for his incredible skills at the precision mill, but by demonstrating in incredible detail how smartphones can be user-serviceable or even built from scratch. They certainly require more finesse than assembling an ATX desktop and can require some more specialized tools, but in the end they’re computers like any other. For the most part.

Continue reading “An IPhone Case Study”

A Portable Chainsaw Sawmill

Unless you’re running a commercial logging operation, with specialized saws, log grapples, mills, transportation for the timber, and the skilled workers needed to run everything, it’s generally easier to bring a sawmill to the wood instead of taking the wood to the sawmill. Especially for a single person, something like a chainsaw mill is generally a much easier and cost effective way to harvest a small batch of timber into lumber. These chainsaw mills can still be fairly cumbersome though, but [izzy swan] has a new design that fits an entire mill onto a hand cart for easy transportation in and out of a forest.

The entire mill is built out of a sheet and a half of plywood, most of which is cut into strips and then assembled into box girders for the track. The remainder of plywood is machined on a CNC to create the carriage for the chainsaw to attach as well as a few other parts to fix the log in place. The carriage has a 4:1 reduction gear on it to winch the chainsaw along the length of the log which cuts the log into long boards. After the milling is complete, the entire mill can be disassembled and packed down onto its hand cart where it can be moved on to the next project fairly quickly.

For a portable mill, it boasts respectable performance as well. It can cut logs up to 11 feet in length and about 30 inches across depending on the type of chainsaw bar used, although [izzy swan] has a few improvements planned for the next prototypes that look to make more consistent, uniform cuts. Chainsaws are incredibly versatile tools to have on hand as well, we’ve seen them configured into chop saws, mortisers, and even fixed to the end of a CNC machine.

Thanks to [Keith] for the tip!

Continue reading “A Portable Chainsaw Sawmill”

An image of a desert with dramatically cloudy skies. In the middle of the image is a series of clay doorways with vertically-oriented wooden slats surrounding a central pole. These form the basis of a panemone windmill.

Help Wanted: Keep The World’s Oldest Windmills Turning

While the Netherlands is the country most known for its windmills, they were originally invented by the Persians. More surprisingly, some of them are still turning after 1,000 years.

The ancient world holds many wonders of technology, and some are only now coming back to the surface like the Antikythera Mechanism. Milling grain with wind power probably started around the 8th Century in Persia, but in Nashtifan, Iran they’ve been keeping the mills running generation-to-generation for over 1000 years. [Mohammed Etebari], the last windmill keeper is in need of an apprentice to keep them running though.

In a world where vertical axis wind turbines seem like a new-fangled fad, it’s interesting to see these panemone windmills are actually the original recipe. The high winds of the region mean that the timber and clay structure of the asbad structure housing the turbine is sufficient for their task without all the fabric or man-made composites of more modern designs. While drag-type turbines aren’t particularly efficient, we do wonder how some of the lessons of repairability might be used to enhance the longevity of modern wind turbines. Getting even 100 years out of a turbine would be some wicked ROI.

Wooden towers aren’t just a thing of the past either, with new wooden wind turbines soaring 100 m into the sky. Since you’ll probably be wanting to generate electricity and not mill grain if you made your own, how does that work anyway?

Continue reading “Help Wanted: Keep The World’s Oldest Windmills Turning”

A milling machine with an attached pantograph following the various intricate patterns of a spirograph on the bench next to it. The spirograph is a series of acrylic gears and brass connecting bars mounted on a wooden base.

Taking A Spirograph Mill For A Spin

Spirographs can make some pretty groovy designs on paper, but what if you want to take it a step further? [Uri Tuchman] has used the pantograph on his milling machine to duplicate the effect in harder materials.

[Tuchman] starts with a quick proof-of-concept using an actual plastic Spirograph toy to make sure it isn’t a totally unworkable idea. Unsurprisingly, the plastic is too flexible to give a highly detailed result on the MDF test piece, so he laser cut an acrylic version as the next prototype. This provided much better stiffness, but he needed to adjust gear ratios and ergonomics to make the device more usable.

The final iteration uses a combination of laser cut acrylic and machined brass components to increase rigidity where needed. A hand-turned knob for the crank adds a classy touch, as does the “Spiromatic 2000” brass plate affixed to the wooden base of the mechanism.

This isn’t the first spirograph-related project we’ve seen. How about one made of LEGO Mindstorms, another using Arduino, or one that makes these patterns on your oscilloscope?

Continue reading “Taking A Spirograph Mill For A Spin”

Proxxon CNC Conversion Makes A Small Mill A Bit Bigger

The Proxxon MF70 mini-mill is a cheap and cheerful, but decently made little desktop mill. As such, it’s been the target of innumerable CNC-ification projects, including an official kit from the manufacturer. But that didn’t stop [Dheera Venkatraman] from sharing his Big Yellow take on this venerable pursuit with us!

This isn’t simply a CNC modification, it’s a wholly 3D-printed CNC modification, which means that you don’t already need a mill to make the usual aluminum pieces to upgrade your mill. And perhaps the standout feature: [Dheera]’s mod basically doubles the Y-axis travel and adds an extra 15 mm of headroom to the Z. If you wanted to stop here, you would have a bigger small manual mill, but as long as you’re at it, you should probably bolt on the steppers and go CNC. It’s your call, because both models are included.

[Dheera] also built a nice enclosure for the MF70, which makes sense because it’s small enough that it could fit on your desktop, and you don’t want it flinging brass chips all over your bench. But as long as it’s on your desk, why not consider a soundproof enclosure for the MF70? Or take the next step, make a nice wooden box, mount a monitor in it, and take the MF70 entirely portable, like this gonzo hack from way back in 2012.

Are Minimills Worth It?

These days, the bar for home-built projects is high. With 3D printers, CNC, and cheap service providers, you can’t get away with building circuits in a shoe box or an old Tupperware container. While most people now have access to additive manufacturing gear, traditional subtractive equipment is still a bit less common. [Someone Should Make That] had thought about buying a “minimill” but he had read that they were not worth it. Like a lot of us, he decided to do it anyway. The pros and cons are in the video you can watch below.

During setup, he covered a few rumors he’d heard about these type of mills, including they are noisy, have poor tolerances, and can’t work steel. Some of these turned out to be true, and some were not.

Continue reading “Are Minimills Worth It?”

Two pairs of steel parallel pliers sit on a rough wooden benchtop. The pair on the left is open and the pair on the right is closed, demonstrating the parallel nature of the pliers' jaws over their entire range of motion. There are three brass pins flush with the steel surface of the handles and you can just barely make out the brass and copper filler material between the steel outer surfaces of the handles.

Producing A Pair Of Parallel Pliers

A regular pair of pliers is fine most of the time, but for delicate work with squarish objects you can’t go wrong with a pair of parallel pliers. [Neil Paskin] decided to make his own pair from scratch. (YouTube)

The jaws were machined down from round stock in [Paskin]’s mill before heat treating and tempering. The steel portions of the handles were cut from 16 gauge plate steel and half of them were stamped on a fly press to make the bridging section around the pivot bolt. The filler for the handles is copper on one side and brass on the other as [Paskin] didn’t have enough brass of the correct size to do both.

The steel and filler were joined with epoxy and copper pins before beveling the edges and sanding to give a comfortable contour to the handles. The bolts for the pliers started as ordinary hex bolts before being machined down on the lathe to a more aesthetically-pleasing shape and size. The final touches included electrolytically etching a logo into the bridge and then spraying down the pliers with a combination lubricant and corrosion preventative spray. This is surely a pair of pliers worth handing down through the generations.

For more mesmerizing machining, checkout this pocket safe or this tiny adjustable wrench.

Continue reading “Producing A Pair Of Parallel Pliers”