Furuta Style Inverted Pendulum Is King Of Geek Desk Ornaments

Newton’s Cradle is thought of as the most elegant of executive desk toys. But that 20th-century dinosaur just got run off the road as [Ben Katz]’s Furuta pendulum streaks past in the fast lane, flipping the bird and heralding a new king of desk adornments.

This Furata pendulum has wonderfully smooth movement. You can watch it go through its dance in the video after the break. Obviously you agree that this is the desk objet d’art for the modern titan of industry (geek). Just don’t stop at watching it in action. The best part is the build log that [Ben] put together — this project has a little bit of everything!

Continue reading “Furuta Style Inverted Pendulum Is King Of Geek Desk Ornaments”

Stick Balances Itself With Reaction Wheels

The inverted pendulum is a pretty classic dynamics problem and reaction wheels are cool. That’s why we like [Mike Rouleau]’s self-balancing stick.

The video, viewable after the break, was fairly sparse on details, but he furnished some in the comments. The little black box on the top is a GY-521 Gyroscope module. It sends its data to an Arduino attached to the black cord which trails off the screen. The Arduino does its mathemagic and then uses a motor controller to drive the reaction wheels at the correct speeds.
Continue reading “Stick Balances Itself With Reaction Wheels”

LED Pendulum Pulses Out Clock Face

You have to admit [Dylan Rush’s] clock is a real swinger. Literally. You’ve seen the desk novelties where an arm with leds mounted on it sweeps out a message? [Dylan] did the same thing to make a clock but instead of drawing numbers, he actually draws an analog clock face. Y’know one of those round things with arms?

IMG_20150824_2156213_rewindBehind the clock is an Arduino driving a MAX7219 LED controller. Using the MAX7219 was a challenge because it expects a grid of LEDs while the clock needs a linear array. [Dylan] used a line of individual LEDs wired to match what the controller wanted. A rotary encoder tells the processor the position of the arm so the Arduino sketch can determine which LEDs should be lit to show the time and clock face.

What’s even more amazing is [Dylan] created this before clocks became infamous.

Swing over to the video after the break.

Continue reading “LED Pendulum Pulses Out Clock Face”

Pendulum MIDI Controller Really Swings

Once in a while, we see a project that makes us want to stop whatever we’re doing and build our own version of it. This time, it’s Modulum, a pendulum-based MIDI controller. It’s exactly what it sounds like. The swinging pendulum acts as a low-frequency oscillator. In the demo video configuration, you can hear it add a watery, dreamlike quality, sort of like a lap steel guitar on LSD.

The pendulum’s motion is detected by four pieces of stretchy, conductive cord. These are wired to an Arduino Nano in a voltage divider fashion. [Evan and Kirk] used the Maxuino library to determine x and y mapping of possible pendular positions as well as perform the necessary MIDI processing. Get your groove on after the break, and check out some of the many other fantastic MIDI controllers we’ve had the pleasure of covering.

Continue reading “Pendulum MIDI Controller Really Swings”

Double Pendulum

Powered Double Pendulum Is A Chaotic Display

If you’ve never seen a double pendulum before, it’s basically just a pendulum with another pendulum attached to the end. You might not think that’s anything special, but these devices can exhibit extremely chaotic behavior if enough energy is put into the system. The result is often a display that draws attention. [David] wanted to build his own double pendulum display, but he wanted to make it drive itself. The result is a powered double pendulum.

There aren’t many build details here, but the device is simple enough that we can deduce how it works from the demonstration video. It’s broken into two main pieces; the frame and the pendulum. The frame appears to be made mostly from wood. The front plate is made of three layers sandwiched together. A slot is cut out of the middle to allow a rail to slide up and down linearly. The rail is designed in such a way that it fits between the outer layers of the front plate like a track.

The pendulum is attached to the linear rail. The rail moves up and down and puts energy into the pendulum. This causes the pendulum to actually move and generate the chaotic behavior. The rail slides up and down thanks to an electric motor mounted to the base. The mechanics work similar to a piston on a crankshaft. The motor looks as though it is mounted to a wooden bracket that was cut with precision on a laser cutter. The final product works well, though it is a bit noisy. We also wonder if the system would be even more fun to watch if the rotation of the motor had an element of randomness added to it. Or he could always attach a paint sprayer to the end. Continue reading “Powered Double Pendulum Is A Chaotic Display”

Chicken-powered Pendulum

Every once in a while we get sent a link that’s so cute that we just have to post it. For instance: this video from [Ludic Science]. It’s a wind-up chicken toy that kicks a pendulum back and forth. No more, no less.

But before you start screaming “NOT A HACK!” in the comments below, think for a second about what’s going on here. The bird has a spring inside, and a toothed wheel that is jammed and released by the movement of the bird’s foot (an escapement mechanism). This makes the whole apparatus very similar to a real pendulum clock.

Heck, the chick toy itself is pretty cool. It’s nose-heavy, so that under normal conditions it would tip forward. But when it’s wound up, tipping forward triggers the escapement and makes it hop, tipping it backward in the process and resetting the trigger. The top-heavy chicken is an inverted pendulum!

And have a look, if you will indulge, at the very nice low-tech way he creates the pivot: a bent piece of wire, run through a short aluminum tube, held in place by a couple of beads. Surely other pivots are lower-friction, but the advantage of using a rod and sleeve like this is that the pendulum motion is constrained to a plane so that it never misses the chicken’s feet.

Our only regret is that he misses (by that much) the obvious reference to a “naked chick” at the end of the video.

Continue reading “Chicken-powered Pendulum”

Designing And Building A Wooden Mechanical Clock

wooden-clock-prototype

Electronics are undoubtedly the basis for our modern society. Leaving out transistor-based devices, and a mechanical clock would be one of the most intricate devices man has come up with. As a Mechanical Engineer, I thought it would be a fun challenge to design and build my own gear-driven clock.

Because clocks have obviously been invented, I wouldn’t be starting from scratch, and I don’t think I could have figured out an escapement on my own. I explain my initial clock escapement and gear reduction design thoughts in this post, and originally getting the escapement to work was my biggest fear.

As seen in the first video after the break, the escapement gear is still a big problem, but not really for the reason I expected. The shaft that the gear sits on seems to be bent, so it allows the escapement to “go free” for part of it’s cycle, losing any sense of accurate timekeeping. Be sure to also check out the second video, especially around 1:50 when I show what happens when an escapement gear goes much faster than a normal clock. Continue reading “Designing And Building A Wooden Mechanical Clock”