Biological-inspired Robotic Eye Movements

Researchers at Georgia Tech have developed a biologically inspired system to control cameras on board robots that simulate the Saccadic optokinetic system of the human eye. Its similarity to the muscular system of the human eye is uncanny.

Joshua Schultz, a Ph.D candidate, says that this system has been made possible in part to piezoelectric cellular actuator technology. Thanks to the actuators developed in their laboratory it is now possible to capture many of the characteristics associated with muscles of the human eye and its cellular structure.

The expectation is that the piezoelectric system could be used for future MRI-based surgery, furthering our ability to research and rehabilitate the human eye.

[via engadget]

Electronic Recorder Conversion

As we wrote the title to this feature we can see why [Jeff Ledger] calls it an electronic flute and not a recorder; this is a musical instrument and not something for archiving audio. Confusion aside, we’re all familiar with these plastic ‘musical’ instruments. Many elementary schools in our area require students to buy one as part of music class. So it shouldn’t be hard to find one if you want to try this for yourself (heck, [Jeff] grabbed his a the dollar store).

Basically, he’s replaced the finger holes with momentary press switches, then uses a Propeller dev board to turn the button presses into music. It’s simple and quick, but what does it for us is the breath actuator. Sure, you can set this up to play whenever a button is depressed, but [Jeff] went that extra mile and added a piezoelectric element to the bottom. When you blow through the instrument it flexes slightly, generating a tiny current that can be measured by the microcontroller. Check out the short clip after the break.

Do a little more work and you could turn this into some type of musical game controller. We’re thinking Zelda!

Continue reading “Electronic Recorder Conversion”

Faking High-speed Video Photography Of Repetitive Events

[Destin] has been doing some high-speed and high-resolution video photography using a standard DSLR. He accomplishes this using a bit of ingenuity to capture images of repetitive events at slightly different points in time.

The banner image above shows a bullet travelling through a set of matchsticks. [Destin] uses the sound of the gun firing to trigger the flash that captures the image. A piezeo transducer picks up the sound, triggering a precision pulse generator. That pulse generator then triggers the flash, adding a delay based on the settings. In this way, [Destin] can capture video by firing a bullet for each frame, but adjusting the delay period of the pulse generator to capture the image when the bullet is in a slightly different place from the previous frame. It’s an old technique, but after some post-processing it produces a high-quality output without sinking thousands of dollars into an actual high-speed camera. Check out the video we’ve embedded after the break.

We like this guy’s style. We saw him strapping a camera onto a chicken back in December and we hope to see a lot more from him in the future.

Continue reading “Faking High-speed Video Photography Of Repetitive Events”

I-Swarm Robot Update

I-Swarm_Micro_Robot_On_Thumb

Back in October we reported on the I-Swarm robotics project. [Travis] sent us some more information. These tiny robots are programmed optically and are able to respond to programming commands via an infrared signal. Locomotion is facilitated with piezoelectric actuators and the power to the units provided through a solar cell. It is not clear that this project is still ongoing as the I-Swarm web page lists a project termination date of 6/31/2008. That being said, the video embedded after the break was posted two days ago showing swarm movement and detailing the programming, testing, and hardware specifics. Continue reading “I-Swarm Robot Update”

BlackBerry Storm 2 Teardown

blackberry_storm_2

Photos of the BlackBerry Storm 2, both inside and out, have been leaked. Engadget provides us with the specifics, going into detail about the four large piezoelectric pressure sensors that sit underneath the screen. It looks as though the screen will still function as a button, just without the physical movement of the previous model that received mixed reviews. For a better explanation of the technology behind the phone’s innovative screen, here’s a video describing it in more detail and a writeup over at the CrackBerry forums.

Dance Floor Power Generation


With concerns about the environment at an all-time high, do we roll up our sleeves and fix the situation or set our fears aside and dance the night away? [Andrew Charalambous], a nightclub owner in from Britain, doesn’t think we should have to choose, so he installed a dance floor that harnesses power from dancers into one of his clubs.

The dance floor uses piezoelectrics to collect the power: as clubgoers dance, electricity-producing crystals under the floor are compressed, producing a small current. The current is collect by embedded batteries, which in turn provide the power to lights, audio systems, and other parts of the club that consume electricity.

It’s certainly an interesting idea, but we’d like to know just how much power these floors are able to generate. Is this a gimmick or a genuinely practical solution? [Charalambous]’s club has adopted the somewhat hokey policy of forcing patrons to sign a pledge to be climate-conscious and do what they can to help the Earth, but that’s a small price to pay to earn green karma and have fun at the same time.

[via io9]