Networked Solar Birdhouses Deep In The Woods

[Oitzu] in Germany wrote in to let us know about a series of short but very informative blog posts in which he describes building a series of solar-powered, networked birdhouses with the purpose of spying on the life that goes on within them. He made just one at first, then expanded to a small network of them. They work wonderfully, and [Oitzu]’s documentation will be a big help to anyone looking to implement any of the same elements – which include a Raspberry Pi in one unit as a main gateway, multiple remote units in other birdhouses taking pictures and sending those to the Pi over an nRF24L01+ based radio network, and having the Pi manage uploading those images using access to the mobile network. All with solar power.

Continue reading “Networked Solar Birdhouses Deep In The Woods”

Virtually Free Rapsberry Pis

One of the nice things about the Raspberry Pi is that it runs Linux and you can do a lot of development right on the board. The converse of that is you can do a lot of development on a Linux desktop and then move things over to the Pi once you get the biggest bugs out. However, sometimes you really need to run code on the actual platform.

There is, however, an in-between solution that has the added benefit of upping your skills: emulate a Pi on your desktop. If you use Linux or Windows on your desktop, you can use QEMU to execute Raspberry Pi software virtually. This might be useful if you don’t have a Pi (or, at least, don’t have it with you). Or you just want to leverage your large computer to simplify development. Of course we would be delighted to see you build the Pi equivalent of the Tamagotchi Singularity but that’s a bit beyond the scope of this article.

Since I use Linux, I’m going to focus on that. If you insist on using Windows, you can find a ready-to-go project on Sourceforge. For the most part, you should find the process similar. The method I’ll talk about works on Kubuntu, but should also work on most other Debian-based systems, including Ubuntu.

Continue reading “Virtually Free Rapsberry Pis”

Raspberry Pi Zero Now With Camera Support, Still Only $5

The latest version (1.3) of everyone’s favorite $5 computer now sports a frequently requested feature: a camera connector. The Pi Zero will now use the same economical camera modules available for the full-sized Raspberry Pi units.

The price of the Pi Zero is unchanged at $5, but there is a small catch. While the Raspberry Pi camera modules themselves will work just fine on the Pi Zero, the usual camera cable they come with will not. The Pi Zero’s camera cable connector is a little smaller than the ones on the full-grown Pi, so it needs a special cable to interface the camera modules to the slightly smaller connector found on the Pi Zero.

This should be good news. The new connector has appeared because another production run is ramping up. Logic points to greater availability of the $5 wonder board, but we’re still not holding our breath.

Adafruit Pi Zero camera cable
Pi Zero with camera module connector cable. [Image source: Adafruit]
With the Pi Zero now able to use camera modules, perhaps camera-based Pi projects like these digital binoculars or time-lapse camera rigs can now get even smaller.

[via Engadget]

Self-Driving Cars Get Tiny

There’s a car race going on right now, but it’s not on any sort of race track. There’s a number of companies vying to get their prototype on the road first. [Anurag] has already completed the task, however, except his car and road are functional models.

While his car isn’t quite as involved as the Google self driving car, and it doesn’t have to deal with pedestrians and other active obstacles, it does use a computer and various sensors to make decisions about how to drive. A Raspberry Pi 2 takes the wheel in this build, taking input from a Pi camera and an ultrasonic distance sensor. The Pi communicates to another computer over WiFi, where a neural network operates to make decisions about how to drive the car. It also makes decisions based on a database of pictures of the track, so it has a point of reference to go by.

The video of the car in action is worth a look. It’s not perfect, but it’s quite an accomplishment for this type of project. The possibility that self-driving car models could drive around model sets like model railroad hobbyists create is intriguing. Of course, this isn’t [Anurag]’s first lap around the block. He’s already been featured for building a car that can drive based on hand gestures. We’re looking forward to when he can collide with model busses.

Continue reading “Self-Driving Cars Get Tiny”

Hackaday Prize Entry: Powering A Pi From A Battery

Knocking a microcontroller into sleep mode and waking it up on demand or in intervals is common practice in many low power applications, enabling devices to stay in operation for years on a single coin cell battery. Since there are tons of applications where you might want to do similar things with a Raspberry Pi, [Patrick Van Oosterwijck] created the LiFePO4wered/Pi. The module that snaps on to eight GPIO pins of a Pi, extending it by a long life LiFePO4 battery, a charging regulator, and a proper power management. Obviously, it also makes a great UPS.

lifepo_pcbs[Patrick] realized this project by expanding his already available and equally useful LiFePO4wered/USB charging regulator module by a low power MSP430G2131 microcontroller and a load switch. A daemon on the Raspberry Pi speaks to the module over I2C, allowing you to schedule a wake-up timer, let your Pi autoboot after a power outage or just read out the current battery voltage through a command line tool. Once the Pi is safely shut down, the microcontroller will also go to sleep, resulting in a standby current of 8 uA for the whole system. Together with the 500 mAh LiFePo4 cell, that’s theoretically low enough to send your Pi-ncess into a seven-year-long sleep.

LiFePO4wered/Pi is not only good for sleeping, though. [Patrick’s] runtime tests show, that the 500 mAh cell will power a Raspberry Pi Zero and a WiFi dongle for about two hours. Because the Raspberry Pi and many USB peripherals won’t complain when only 3.2 V are present on the VBUS, [Patrick] was able to squeeze out even more runtime by dismissing the boost converter from the design and driving the Pi directly from the battery voltage. If that worries you, you can either read a detailed explanation on why that works so well or just have a look at the more compliant 5 V version.

lifepo_time_laps_cameraEventually, [Patrick] used his module to create a Raspberry Pi time-lapse camera. A little script lets the Pi take a picture on boot up, set a wake-up timer and go back to sleep again. Safely enclosed in a waterproof electric box and deployed into the wild, the camera took 120 pictures on a single charge.

We’re sure the module will find it’s way into many cool projects and we’re counting the hours until we can get one in [Patrick’s] tindie store. Until then, enjoy the time-lapse video:

The HackadayPrize2016 is Sponsored by:

 

Minimal MQTT: Building A Broker

In this short series, we’re going to get you set up with a completely DIY home automation system using MQTT. Why? Because it’s just about the easiest thing under the sun, and it’s something that many of you out there will be able to do with material on-hand: a Raspberry Pi as a server and an ESP8266 node as a sensor client. Expanding out to something more complicated is left as an exercise to the motivated reader, or can be simply left to mission creep.

We’ll do this in four baby steps. Each one should take you only fifteen minutes and is completely self-contained. There’s a bunch more that you can learn and explore, but we’re going to get you a taste of the power with the absolute minimal hassle.

In this installment, we’re going to build a broker on a Raspberry Pi, which is the hub of your MQTT network. Next time, we’ll get an ESP8266 up and running and start logging some data. After that, we’ll do some back-end scripting in Python to make the data speak, and in the last installment, we’ll explore some of the useful frills and fancy bits. Let’s get started!

Continue reading “Minimal MQTT: Building A Broker”

Raspberry Pi Balloon Goes Too High, Goes Boom, But Survives

Some people like to get high on a Wednesday afternoon. [Kevin Hubbard] of Black Mesa Labs likes to get really high. Even higher than intended: last month, he flew a helium balloon powered by a Raspberry Pi to 103,000 feet. It was only supposed to go to 90,000, but a fault in the code for the controller meant that it went higher, burst and plunged to the ground. All thanks to an extra hash mark in his code.

Continue reading “Raspberry Pi Balloon Goes Too High, Goes Boom, But Survives”