The Computer Of Yesterday, Today

There are a handful of computers that have become true museum pieces. The Altair, of course, is tucked away in the Smithsonian’s warehouse waiting for some time in the future when Apple’s legacy fades or until there’s a remake of War Games. Likewise, the French Micral and American SCELBI are important historical artifacts, and even a modern component-accurate reproduction of an Apple I could fetch a decent amount of cash at the right auction.

There’s something special about these old kit computers – even though the instructions for these machines provided volumes of documentation, no one is building these machines anymore. You just can’t buy the PCBs, and sourcing period-correct components is hard. [Brad] is an exception. He found original, untouched PCBs for the cover story of the July, 1974 edition of Radio-Electronics. It’s an unbuilt Mark-8 minicomputer. Now [Brad] is in a position no one else has been in since the 1970s: he can build a vintage minicomputer, with a TV Typewriter, from scratch. He’s documenting the whole thing.

Since this is the first opportunity this century anyone has had to build a truly retro minicomputer, [Brad] is going all-in with this project. For an interface, he’s building [Don Lancaster]’s TV Typewriter, a device introduced in the September 1973 issue Radio-Electronics. When combined with an old CRT TV, the TV Typewriter becomes a serial terminal. While today something like this could be built around a single microcontroller, constructing the TV Typewriter is no small feat: it’s spread across four boards, uses character generator ROMs, and is currently housed in a beautiful red oak case.

Just because [Brad] is building an ancient computer using ancient parts doesn’t mean he can’t get a little help from modern technology. He’s applying white silk screen to his custom TV Typewriter boards using the toner transfer process. Yes, apparently you can get toner cartridges filled with white (and neon!) toner, and this works well enough to replicate the look of professionally silk screened boards.

This is one of the greatest retrocomputing projects we’ve seen in a very long time. This is a true retrocomputer, complete with custom transformers and gigantic linear power supplies. When this project is complete, [Brad] will have a museum piece, all thanks to a lucky find of an eBay auction and a lot of hard work.

BBSing With The ESP8266

Modems have been around for longer than the web, and before we had Facebook we had the BBS scene. Somewhat surprisingly, people are still hosting BBSes, but have fun finding a landline these days. [Blake Patterson] is one of the leading aficionados of retocomputers, and recently he took it upon himself to review an interesting new device. It’s the WiFi232 Internet Modem, a device that turns a WiFi connection into something a computer with a 25-pin RS-232 connector can understand.

The WiFi232 is made by [Paul Rickards], and given the last few years of WiFi-enabled retrocomputing projects, it’s exactly what you would expect. Onboard the WiFi232 is an ESP8266 module emulating the Hayes AT command set. Baud rates from 300 to 115200 are supported, with power provided through a USB mini jack or solder terminals.

[Blake]’s computer den is the stuff of legend, and as such he has more than enough toys to test out this universal WiFi to Serial converter. Devices used in the test include the Apple //c, IIe, Amiga 1000, and TI-99/4A. In short, everything works just like it should. [Blake] was able to pull up the extant bulletin boards on his collection of ancient computers. You can check out [Blake]’s review of the WiFi232 below

Continue reading “BBSing With The ESP8266”

Adding Character To The C64

The venerable Commodore 64, is there anything it can’t do? Like many 1980s computer platforms, direct access to memory and peripherals makes hacking easy and fun. In particular, you’ll find serial & parallel ports are ripe for experimentation, but the Commodore has its expansion/cartridge port, too, and [Frank Buss] decided to hook it up to a two-line character LCD.

Using the expansion port for this duty is a little unconventional. Unlike the parallel port, the expansion port doesn’t have a stable output, as such. The port contains the data lines of the 6510 CPU and thus updates whenever RAM is read or written to, rather then updating in a controlled fashion like a parallel port does. However, [Frank] found a way around this – the IO1 and IO2 lines go low when certain areas of memory are written to. By combining these with latch circuitry, it’s possible to gain up to 16 parallel output lines – more than enough to drive a simple HD44780 display! It’s a testament to the flexibility of 74-series logic.
It’s all built on a C64 cartridge proto-board of [Frank]’s own design, and effort was made to ensure the LCD works with BASIC for easy experimentation. It’s a tidy mod that could easily be built into a nice enclosure and perhaps used as the basis for an 8-bit automation project. Someone’s gotta top that Amiga 2000 running the school district HVAC, after all!

Z80 Based Raspberry Pi Look-alike

Homebrew computers are the ‘in thing’ these days and the Zilog Z80 is the most popular choice for making one on your own. We have seen some pretty awesome builds but [Martin K]’s Z-berry is the smallest on record yet. As the name suggests, the retrocomputer conforms to the Raspberry Pi form factor which includes the GPIO header.

The Z-berry is designed with a Z80 CPU running at 10 MHz (20 MHz possible) and comes with 32 kB ROM
and 512 kB RAM. In addition to the serial interface, the computer boasts an I2C bus, an SPI bus, and a PS/2 keyboard connector to boot. [Martin K] has a video where the finished system is enclosed in a Raspberry Pi case and has an I2C OLED display attached and working.

[Martin K] has posted a lot of details on how to make your own Z-berry which includes the BOM, schematic and preliminary information. We reached out to him to find out more about the software which is stable and available on request along with PCBs and sample code. Additionally, this project promises to draw much less current than the Raspberry Pi and should prove useful for anyone looking to create a retro solution to a modern problem.

It is interesting to see projects that combine modern techniques with retro technologies. One of the best Z80 projects we have seen is the FAP80 and there are some awesome homebrew computer projects on Hackaday.io for you to take a look and get inspiration.
Continue reading “Z80 Based Raspberry Pi Look-alike”

A 6502 Retrocomputer In A Very Tidy Package

One of the designers whose work we see constantly in the world of retrocomputing is [Grant Searle], whose work on minimal chip count microcomputers has spawned a host of implementations across several processor families.

Often a retrocomputer is by necessity quite large, as an inevitable consequence of having integrated circuits in the period-correct dual-in-line packages with 0.1″ spaced pins. Back in the day there were few micros whose PCBs were smaller than a Eurocard (100 mm x 160 mm, 4″ x 6.3″), and many boasted PCBs much larger.

[Mark Feldman] though has taken a [Grant Searle] 6502 design and fitted it into a much smaller footprint through ingenious use of two stacked Perf+ prototyping boards. This is a stripboard product that features horizontal traces on one side and vertical on the other, which lends itself to compactness. Continue reading “A 6502 Retrocomputer In A Very Tidy Package”

PIC Retrocomputer Boasts VGA, PS/2 Keyboard

You might think that our community would always strive to be at the cutting edge of computing and use only the latest and fastest hardware, except for the steady stream of retrocomputing projects that appear. These minimalist platforms hark back to the first and second generation of accessible microcomputers, often with text displays if they have a display at all, and a simple keyboard interface to a language interpreter.

Often these machines strive to use the hardware of the day, and are covered with 74 logic chips and 8-bit processors in 40-pin dual-in-line packages, but there are projects that implement retrocomputers on more modern hardware. An example is [Sebastian]’s machine based upon a couple of PIC microcontrollers, one of which is an application processor with a PS/2 keyboard interface, and the other of which handles a VGA display interface. The application it runs calculates whether a 4-digit number is a prime and displays its results.

His write-up gives a fascinating overview of the challenges he found in creating a reliable VGA output from such limited hardware, and how he solved them. Though this one-sentence description makes a ton of work sound easy, horizontal sync pulses are generated as hardware PWM, and pixel data is streamed from the SPI bus. The VGA resolution is 640×480, upon which he could initially place a 10×10 block of text. Later optimizations extend it to 14×14.

Sometimes it’s not the power of the hardware but the challenge of making it perform the impossible that provides the attraction in a project, and on this front [Sebastian]’s retrocomputer certainly delivers. We’ve featured many other retrocomputers before here, some of which follow [Sebastian]’s example using modern silicon throughout, while others mix-and-match old and new.

Hackaday Prize Entry: Dodo 6502 Game System

If you are a gamer of A Certain Age, it’s probable that you retain a soft spot for 8-bit computers and consoles of your youth. For a time when addictive gameplay came through the most minimal of graphics, and when gaming audio was the harshest of square waves rather than immersive soundscapes.

Does the previous paragraph sound familiar? Then we may just have the device for you. The Dodo is a handheld console that harks back to that era with a 6502 processor and a 128×64 pixel OLED screen. Games are loaded from plug-in EEPROM cartridges, and sounds are suitably period-digital square wave tones. It’s the brainchild of [Peter Noyes], and he says he will consider it complete when it sports a game fun enough to entertain his 4-year-old.

The prototype Dodo is a handheld form-factor made from two stacked PCBs. The upper one has the display and buttons while the lower has the classic 6502 and associated chipset in through-hole DIP format. A Game Boy Micro it ain’t, but miniaturization is not the name of the game with these consoles. Best of all though, all the console’s resources are available in a GitHub repository, so you can all have a play too.

The 6502 has featured in a huge number of projects here on Hackaday over the years. Now it’s turned up in the Hackaday Prize.