Easy-To-Use Music Player Relies On RFID

Microwaves used to be simple to use. Set the dial for the desired time, and hit start. Then, everything went digital and the average microwave now takes between four and six button presses in precise order just to start heating. Music players have gone down a similar path, and those that grew up in the era of vinyl records can find modern digital media simply too hard to work with. To solve this problem, [ananords] whipped up Juuke, a music player focused on ease of use.

The Juuke has a simplistic interface intended to be as easy to use as possible. Songs are selected using printed cards with embedded RFID tags – placing them on the Juuke triggers playback. Volume is controlled with a simple knob, and the only two buttons are for play/pause and shuffle mode.

Underneath, an Arduino Uno runs the show, hooked up to a RC522 RFID interface board. Music is handled by the DFPlayer mini, which loads tracks off a microSD card. The DFPlayer can be hooked up to a speaker directly, but there’s also a 3.5mm jack output if the device is to be used with an external amplifier.

It’s a tidy project, and one that actually looks pretty fun to use. Obviously, there’s some time investment required to prepare the SD card and produce the RFID cards, but the final product could be fun to use at a party, too. We’ve seen similar builds before, as well. Video after the break.

Continue reading “Easy-To-Use Music Player Relies On RFID”

Son Of Rothult

We are continuously inspired by our readers which is why we share what we love, and that inspiration flows both ways. [jetpilot305] connected a Rothult unit to the Arduino IDE in response to Ripping up a Rothult. Consider us flattered. There are several factors at play here. One, the Arduino banner covers a lot of programmable hardware, and it is a powerful tool in a hardware hacker’s belt. Two, someone saw a tool they wanted to control and made it happen. Three, it’s a piece of (minimal) security hardware, but who knows where that can scale. The secure is made accessible.

The Github upload instructions are illustrated, and you know we appreciate documentation. There are a couple of tables for the controller pins and header for your convenience. You will be compiling your sketch in Arduino’s IDE, but uploading through ST-Link across some wires you will have to solder. We are in advanced territory now, but keep this inspiration train going and drop us a tip to share something you make with this miniature deadbolt.

Locks and security are our bread and butter, so enjoy some physical key appreciation and digital lock love.

Capture The Flag, Along With The Game Data

With events of all sizes on hold and live sports mostly up in the air, it’s a great time to think of new ways to entertain ourselves within our local circles. Bonus points if the activity involves running around outside, and/or secretly doubles as a team-building exercise, like [KarelBousson]’s modernized version of Capture the Flag.

Much like the original, the point of this game is to capture the case and keep it for as long as possible before the other team steals it away. Here, the approach is much more scientific: the box knows exactly who has it and for how long, and the teams get points based on the time the case spends in any player’s possession.

Each player carries an RFID tag to distinguish them from each other. Inside the case is an Arduino Mega with a LoRa shield and a GPS unit. Whenever the game is afoot, the case communicates its position to an external Raspi running the game server.

If you haven’t met LoRa yet, check out this seven-part introductory tutorial.

Defeating Fridge DRM With Duct Tape And A Dremel

We love writing about DRM here at Hackaday. Because when we do, it usually means someone found a way to circumvent the forced restrictions laid upon by a vendor, limiting the use of a device we thought is ours once we bought it. The device in question this time: the water filter built into GE’s fridges that would normally allow its “owner” to pour a refreshing glass of cold water. Except the filter is equipped with an RFID tag and an expiration, which will eventually deny you that little luxury. And if that’s already a feature, you can bet it won’t just let you insert any arbitrary filter as replacement either.

Enraged by every single aspect of that, [Anonymous] made a website to vent the frustration, and ended up tearing the culprit apart and circumvent the problem, with a little help from someone who was in the same situation before. As it turns out, the fridge comes with a “bypass filter” that is just a piece of plastic to fit in place of the actual filter, to pour unfiltered, but still cold water. That bypass filter is also equipped with an RFID tag, so the reader will recognize it as a special-case filter, which luckily enough doesn’t have an expiration counter.

The general idea is to take out that bypass filter’s RFID tag and place it on a generic, way cheaper filter to trick the fridge into thinking it simply doesn’t have a filter in the first place, while still enjoying the filters actual functionality. However, this might not be the most stable solution if the tag isn’t placed in the exact position. Also, retrieving the tag in the first place proved tricky, and [Anonymous] initially ended up with nothing but the antenna pad, while the tag itself remained sturdily glued into the plastic piece.

Continue reading “Defeating Fridge DRM With Duct Tape And A Dremel”

Physical Security Hack Chat With Deviant Ollam

Join us on Wednesday, June 3 at noon Pacific for the Physical Security Hack Chat with Deviant Ollam!

You can throw as many resources as possible into securing your systems — patch every vulnerability religiously, train all your users, monitor their traffic, eliminate every conceivable side-channel attack, or even totally air-gap your system — but it all amounts to exactly zero if somebody leaves a door propped open. Or if you’ve put a $5 padlock on a critical gate. Or if your RFID access control system is easily hacked. Ignore details like that and you’re just inviting trouble in.

Once the black-hats are on the inside, their job becomes orders of magnitude easier. Nothing beats hands-on access to a system when it comes to compromising it, and even if the attacker isn’t directly interfacing with your system, having him or her on the inside makes social engineering attacks that much simpler. System security starts with physical security, and physical security starts with understanding how to keep the doors locked.

join-hack-chatTo help us dig into that, Deviant Ollam will stop by the Hack Chat. Deviant works as a physical security consultant and he’s a fixture on the security con circuit and denizen of many lockpicking villages. He’s well-versed in what it takes to keep hardware safe from unauthorized visits or to keep it from disappearing entirely. From CCTV systems to elevator hacks to just about every possible way to defeat a locked door, Deviant has quite a bag of physical security tricks, and he’ll share his insights on keeping stuff safe in a dangerous world.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 3 at 12:00 PM Pacific time. If time zones have you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Queue Up Your Tracks With A Well Placed Hexagon

Besides a few stalwart holdouts, most of us have have switched over listening to music in digital form, often via an online stream. As long as no data caps stand in your way, it’s a quick and easy way to listen to your favorite artists or discover new ones. But there’s something visceral about act of loading a piece of physical media into a player that can’t be replicated by just clicking or tapping on a screen.

Which is why [InfiniteVideo] put together this RFID playlist launcher peripheral. There’s an important distinction to be made here, as this device isn’t actually playing or even storing audio. A nearby Raspberry running Volumio handles the actual playback. This device is just an RFID reader with some clever tokens that the listener can use to select their favorite artists and albums with physical tokens. It’s certainly not a new concept, but we think the nuances of this particular build warrant a closer look.

The “player” consists of a ESP8266 with a MFRC522 RFID reader wired directly to the GPIO pins. The pair are housed in a rather large 3D printed enclosure, which at first might seem a bit excessive. But it turns out that [InfiniteVideo] is actually trying to replicate a crowd sourced project called Qleek which is based around a similarly chunky reader.

Likewise, the hexagon tiles are also lifted from the Qleek concept. But rather than being made out of wood as in the original, [InfiniteVideo] is printing those as well. Halfway during the process, the print is paused and an RFID sticker is placed in the middle of the hexagon. Once resumed, the RFID tag becomes permanently embedded in the tile with no visible seams to reveal how the trick was pulled off. With the addition of a suitable label, each printed hexagon gets associated with the desired album or artist in software.

This project is notable for its convenience and visual flair, but using RFID tags for media identification can also be a practical choice. It can be used as an assistive technology, or as a way for young children to easily interact with devices.

The Internet Of Football

While football in the United States means something totally different from what it means in the rest of the world, fans everywhere take it pretty seriously. This Sunday is the peak of U.S. football frenzy, the Super Bowl, and it is surprisingly high-tech. The NFL has invested in a lot of technology and today’s football stats are nothing like those of the last century thanks to some very modern devices.

It is kind of interesting since, at the core, the sport doesn’t really need a lot of high tech. A pigskin ball, some handkerchiefs, and a field marked off with some lime and a yardstick will suffice. However, we’ve seen a long arc of technology in scoreboards, cameras — like instant replay — and in the evolution of protective gear. But the last few years have seen the rise of data collection. It’s being driven by RFID tags in the player’s shoulder pads.

These aren’t the RFID chips in your credit card. These are long-range devices and in the right stadium, a computer can track not only the player’s position, but also his speed, acceleration, and a host of other statistics.

Continue reading “The Internet Of Football”