Biped Bob Walks And Dances

If you have a few servo motors, an Arduino, and a Bluetooth module, you could make Biped Bob as a weekend project. [B. Aswinth Raj] used a 3D printer, but he also points out that you could have the parts printed by a service or just cut them out of cardboard. They aren’t that complex.

Each of Bob’s legs has two servo motors: one for the hip and one for the ankle. Of course, the real work is in the software, and the post breaks it down piece-by-piece. In addition to the Arduino code, there’s an Android app written using Processing. You can build it yourself, or download the APK. The robot connects to the phone via BlueTooth and provides a simple user interface to do a few different walking gaits and dances. You can see a few videos of Biped Bob in action, below.

This wouldn’t be a bad starter project for a young person or anyone getting started with robotics, especially if you have a 3D printer. However, it is fairly limited since there are no sensors. Then again, that could be version two, if you were feeling adventurous.

We have mixed feelings about the BlueTooth control. BlueTooth modules are cheap and readily available, but so are ESP8266s. It probably would not be very difficult to put Bob on WiFi and let him serve his own control page to any web browser.

If Bob meets Jimmy, he may find himself envious. However, Jimmy would be a little more challenging to build. We’ve actually seen quite a few walking ‘bots over the years. Continue reading “Biped Bob Walks And Dances”

Sony Unveils Swarm Robots For Kids

Sony recently unveiled Toio, an educational robotics toy for young programmers. We all know Sony as an electronics giant, but they do dabble in robotics from time to time. The AIBO dog family is probably their most famous creation, though there is also QRIO, a bipedal humanoid, and on the stranger side, the Rolly.

Toio consists of two small cube robots which roll around the desktop. You can control them with handheld rings, or run programs on them. The robots are charged by a base station, which also has a cartridge slot. Sony is marketing this as an ecosystem that can be expanded by buying packs which consist of accessories and a software cartridge. It looks like the cartridge is yet another proprietary memory card format. Is Sony ever going to learn?

There isn’t much hard information on Toio yet. We know it will be released in Japan on December 1st and will cost around ¥ 20,000, or about 200 USD. No word yet on a worldwide release.

The striking thing about this kit is how well the two robots know each other’s position. Tape a paper pair of pants, and they “walk” like two feet. Attach a paper linkage between them, and they turn in perfect sync, like two gears. Add some paper strips, and the two robots work together to form a gripper.  We can only guess that Sony is using cameras on the bottom of each robot to determine position — possibly with the aid of an encoded work surface — similar to Anoto paper. Whatever technology it is, here’s to hoping Sony puts out an SDK for researchers and hackers to get in on the fun with these little robots.

Continue reading “Sony Unveils Swarm Robots For Kids”

Robotic Arms Controlled By Your….. Feet?

The days of the third hand’s dominance of workshops the world over is soon coming to an end. For those moments when only a third hand is not enough, a fourth is there to save the day.

Dubbed MetaLimbs and developed by a team from the [Inami Hiyama Laboratory] at the University of Tokyo and the [Graduate School of Media Design] at Keio University, the device is designed to be worn while sitting — strapped to your back like a knapsack — but use while standing stationary is possible, if perhaps a little un-intuitive. Basic motion is controlled by the position of the leg — specifically, sensors attached to the foot and knee — and flexing one’s toes actuates the robotic hand’s fingers. There’s even some haptic feedback built-in to assist anyone who isn’t used to using their legs as arms.

The team touts the option of customizeable hands, though a soldering iron attachment may not be as precise as needed at this stage. Still, it would be nice to be able to chug your coffee without interrupting your work.

Continue reading “Robotic Arms Controlled By Your….. Feet?”

“You Had One Job”, Bot

Only a Human would understand the pithy sarcasm in “You had one job”. When [tterev3]’s RopeBot the Robot became sentient and asked “What is my purpose?”, [tterev3] had to lay it out for him quite bluntly – “You cut the rope”. He designed RopeBot (YouTube video embedded below) for one job only – single mission, single use.

A couple of years back, [tterev3] had put up some thick ropes for a low ropes course in his backyard. Over time, the trees grew up, and the ropes became embedded in the tree trunks. Instead of risking his own life and limbs to try cutting them down, he designed RopeBot to do the job for him. It’s built from scavenged electronics and custom 3D printed parts. A geared motor driving a large cogged pulley helped by two smaller, idler wheels helps the bot to scurry up and down the rope. A second geared motor drives a cam reciprocating mechanism, similar to industrial metal cutting saws. A common utility knife is the business end of the bot, helping slice through the rope. A radio receiver and controller is the brains of the bot which drives the two motors through a motor driver board. The remote controller, assembled on a piece of foam, has three switches for Up, Down and Cut. Everything is held together on the 3D printed frame and tied down with a generous use of zip ties, with rubber bands providing spring tension where needed. When the rope has been cut, the RopeBot comes down for a smashing end. It might not look fancy, but it gets the job done. We spy some real ball bearings on the three pulleys meaning [tterev3] didn’t skimp on good design just because it’s a disposable robot. Obviously, he spent a fair amount of time and effort in designing RopeBot.

Once the job is done, most of the electronics and hardware can be recovered and used again while the 3D printed parts could be recycled, making this a really cost-effective way of handling the problem. Like the Disposable Drones we covered earlier, these kind of “use and discard” robots not only make life easier for Humans, but also ensure low economic and ecological impact.

Continue reading ““You Had One Job”, Bot”

ZeroBot Is As Simple As It Gets

Usually at Hackaday we like to post projects that are of interest because of their complexity. That’s especially true for robots — the more motors and sensors the better. But, occasionally we come across a project that’s beautiful because of its simplicity. That’s the case with [Max Kern]’s ZeroBot, recently posted over on Hackaday.io.

The ZeroBot breaks the essence of a robot down to just the essentials: a Raspberry Pi Zero W for the brains, a driver and two motors for movement, a battery for power, and a camera to see. The chassis is made completely of parts that are easily 3D-printable. The Zero W creates a WiFi access point that users can connect to on a computer or smart phone, and subsequently provides FPV control.

This project is reminiscent of the starter robot kits many of us began our hacking lives with, and it’s a great teaching tool for kids. Print the parts and you can have the robot built-in an afternoon, while still being fun enough to actually play with when you’re done. After the physical robot is built, the possibilities for programming and controlling it are endless.

Continue reading “ZeroBot Is As Simple As It Gets”

Evezor Robotic Arm Engraves 400 Coasters

When you’re running a Kickstarter for a robotic arm, you had better be ready to prove how repeatable and accurate it is. [Andrew] has done just that by laser engraving 400 wooden coasters with Evezor, his SCARA arm that runs on a Raspberry Pi computer with stepper control handled by a Smoothieboard.

Evezor is quite an amazing project: a general purpose arm which can do everything from routing circuit boards to welding given the right end-effectors. If this sounds familiar, that’s because [Andrew] gave a talk about Evezor at Hackaday’s Unconference in Chicago,

One of the rewards for the Evezor Kickstarter is a simple wooden coaster. [Anderw] cut each of the wooden squares out using a table saw. He then made stacks and set to programming Evezor. The 400 coasters were each picked up and dropped into a fixture. Evezor then used a small diode laser to engrave its own logo along with an individual number. The engraved coasters were then stacked in a neat output pile.

After the programming and setup were complete, [Andrew] hit go and left the building. He did keep an eye on Evezor though. A baby monitor captured the action in low resolution. Two DSLR cameras also snapped photos of each coaster being engraved. The resulting time-lapse video can be found after the break.

Continue reading “Evezor Robotic Arm Engraves 400 Coasters”

Robot Lives In Your Garden And Eats The Weeds

You can’t deny the appeal of gardening. Whether it’s a productive patch of vegetables or a flower bed to delight the senses, the effort put into gardening is amply rewarded. Nobody seems to like the weeding, though — well, almost nobody; I find it quite relaxing. But if you’re not willing to get down and dirty with the weeds, you might consider deploying a weed-eating garden robot to do the job for you.

Dubbed the Tertill, and still very much a prototype, the garden robot is the brainchild of some former iRobot employees. That’s a pretty solid pedigree, and you can see the Roomba-esque navigation scheme in action — when it bumps into something it turns away, eventually covering the whole garden. Weed discrimination is dead simple: short plants bad, tall plants good. Seedlings are protected by a collar until they’re big enough not to get zapped by the solar-powered robot’s line trimmer.

It’s a pretty good idea, but the devil will be in the details. Will it be able to tend the understory of gardens where weeds tend to gather as the plants get taller? Can it handle steep-sided raised beds or deeply mulched gardens? Perhaps there are lessons to be learned from this Australian weed-bot.

Continue reading “Robot Lives In Your Garden And Eats The Weeds”