Fluid Simulation Pendant Teaches Lessons In Miniaturization

Some projects seem to take on a life of their own. You get an idea, design and prototype it, finally build the thing and — it’s good, but it’s not quite right. Back to the drawing board, version 2, still not perfect, lather, rinse, repeat. Pretty soon you look around to discover that you’ve built ten of them. Oops.

That seems to be the arc followed by [mitxela] with this very cool fluid simulation pendant. The idea is simple enough; create a piece of jewelry with a matrix of tiny LEDs that act like the pendant is full of liquid, sloshing about with the slightest movement. In practice, though, this project was filled with challenges. Surprisingly, [mitxela] doesn’t seem to number getting a fluid dynamics simulation running on a microcontroller among those problems, at least not to a great degree. Rather, the LED matrix seemed to cause the most problems, both in terms of laying it out on the 25-mm diameter PCB and how to address the LEDs with relatively limited GPIO on the STM32 microcontroller. The solution to both was diagonal charlieplexing, which reduces the number of vias needed for the 216-LED matrix and allows the 0402 to be densely packed, along with providing some tolerance for solder bridging.

And then there’s the metalworking heroics, which no [mitxela] project would be complete without. This seems to be where a lot of the revisions come from, as the gold-plated brass case kept not quite living up to expectations. The final version is a brass cup containing the LiR2450 rechargeable battery, a magnetic charging connector, and the main PCB, all sealed by a watch crystal. The fluid simulation is quite realistic and very responsive to the pendant’s position. The video below shows it in action along with a summary of the build.

If you want to catch up on [mitxela]’s back catalog of miniaturized builds, start with his amazing industrial ear adornments or these tiny matrix earrings. We’re also fond of his incredible shrinking MIDI builds. Continue reading “Fluid Simulation Pendant Teaches Lessons In Miniaturization”

8-Bit Computers Crunch Advanced Scientific Computations

Although largely relegated to retrocomputing enthusiasts and embedded systems or microcontrollers now, there was a time when there were no other computers available other than those with 8-bit processors. The late 70s and early 80s would have seen computers with processors like the Motorola 6800 or Intel 8080 as the top-of-the-line equipment and, while underpowered by modern standards, these machines can do quite a bit of useful work even today. Mathematician [Jean Michel Sellier] wanted to demonstrate this so he set up a Commodore 64 to study some concepts like simulating a quantum computer.

The computer programs he’s written to do this work are in BASIC, a common high-level language of the era designed for ease of use. To simulate the quantum computer he sets up a matrix-vector multiplication but simplifies it using conditional logic. Everything is shown using theĀ LIST command so those with access to older hardware like this can follow along. From there this quantum computer even goes as far as demonstrating a quantum full adder.

There are a number of other videos on other topics available as well. For example, there’s an AmigaBasic program that simulates quantum wave packets and a QBasic program that helps visualize the statistical likelihood of finding an electron at various locations around a hydrogen nucleus. While not likely to displace any supercomputing platforms anytime soon, it’s a good look at how you don’t need a lot of computing power in all situations. And, if you need a refresher on some of these concepts, there’s an overview on how modern quantum computers work here.

Hackaday Links Column Banner

Hackaday Links: November 24, 2024

We received belated word this week of the passage of Ward Christensen, who died unexpectedly back in October at the age of 78. If the name doesn’t ring a bell, that’s understandable, because the man behind the first computer BBS wasn’t much for the spotlight. Along with Randy Suess and in response to the Blizzard of ’78, which kept their Chicago computer club from meeting in person, Christensen created an electronic version of a community corkboard. Suess worked on the hardware while Christensen provided the software, leveraging his XMODEM file-sharing protocol. They dubbed their creation a “bulletin board system” and when the idea caught on, they happily shared their work so that other enthusiasts could build their own systems.

Continue reading “Hackaday Links: November 24, 2024”

Libre Space Foundation Aims To Improve Satellite Tech

There’s no shortage of movies, TV shows, and books that show a dystopian future with corporations run amok in outer space with little or no effective oversight. Dune, The Expanse, and The Dispossessed spring to mind as predicting different aspects of this idea, but there are plenty of other warnings throughout sci-fi depicting this potential future. One possible way of preventing this outcome is by ensuring that space is as open-sourced as possible and one group, the Libre Space Foundation (LSF), is working towards this end. Their latest is a project with Ondsel to develop and model a satellite deploying mechanism using almost entirely open source software.

The LSF had already designed the PICOBUS satellite launcher system that flew to space in 2022 and deployed a number of CubeSats, but the group needed more information about how the system would perform. They turned to Ondsel to help develop a multi-body dynamics (MBD) solver, managing simulations with mass-spring-damper models. The satellite launcher includes a large constant-force spring that pushes the CubeSats out of the device once the door is opened, and the model can now simulate their paths in space without gravity. The team will launch their next set of satellites sometime next year on an RFA-ONE rocket.

The LSF maintains a huge database of their open source space projects, including this one, on their GitLab page. Although it might seem like small potatoes now, the adoption of open source software and hardware by space-fairing entities can help further the democratization of low Earth orbit.

Thanks to [johnad] for the tip!

Hacking An NVIDIA CMP 170HX Crypto GPU For EM Sim Work

A few years back NVIDIA created a dedicated cryptocurrency mining GPU, the CMP 170HX. This was a heavily restricted version of its flagship A100 datacenter accelerator, using the same GA100 chip. It was intended for accelerating Ethash, the Etherium proof-of-work algorithm, and nothing else. [niconiconi] bought one to use for accelerating PCB electromagnetic simulations and put a lot of effort into repairing the card, converting it to water-cooling, and figuring out how best to use this nobbled GPU.

Typically, the GA100 silicon sits in the center of the mighty A100 GPU card and would be found in a server rack, cooled by forced air. This was not an option at home, so an off-the-shelf water-cooling block was wedged in. During this process, [niconconi] found that the board wouldn’t power on, so they went on a deep dive into the power supply tree with the help of a leaked A100 schematic. The repair and modifications can be found in the appendix, right down to the end of the article. It is a long read to get there.

Continue reading “Hacking An NVIDIA CMP 170HX Crypto GPU For EM Sim Work”

2024 Tiny Games Contest: Realistic Steering Wheel Joystick In Miniature

For racing games, flight simulators, and a few other simulation-style games, a simple controller just won’t do. You want something that looks and feels closer to the real thing. The major downsides to these more elaborate input methods is that they take up a large amount of space, requiring extra time for setup, and can be quite expensive as well. To solve both of these problems [Rahel zahir Ali] created a miniature steering wheel controller for some of his favorite games.

While there are some commercial offerings of small steering wheels integrated into an otherwise standard video game controller and a few 3D printed homebrew options, nothing really felt like a true substitute. The main design goal with this controller was to maintain the 900-degree rotation of a standard car steering wheel in a smaller size. It uses a 600P/R rotary encoder attached to a knob inside of a printed case, with two spring-loaded levers to act as a throttle and brake, as well as a standard joystick to adjust camera angle and four additional buttons. Everything is wired together with an Arduino Leonardo that sends the inputs along to the computer.

Now he’s ready to play some of his favorite games and includes some gameplay footage using this controller in the video linked below. If you’re racing vehicles other than cars and trucks, though, you might want a different type of controller for your games instead.

Continue reading “2024 Tiny Games Contest: Realistic Steering Wheel Joystick In Miniature”

Simulating Air Flow For 3D Printing

You’ve probably heard that a 3D printer is capable of producing its own replacement parts. Sometimes, that even includes upgraded or improved versions of the parts it was originally built with. But sometimes, it’s hard to figure out what improved really means. Think about air ducts that cool the part after printing. In theory, it should be easy to design a new duct. But how does it perform? Empirical testing can be difficult, but [Mike] shows how you can simulate the airflow so you can test design changes and validate assumptions before you print the actual part.

Of course, this wouldn’t only apply to printer ducts. You might also get some tips if you want to model airflow for PC cooling, hot air soldering, or other air-related projects. The free version of the software has some limitations, but it was surprisingly capable.

We also enjoyed how [Mike] used fluid to visualize the actual patterns and compared it to the simulation. The trick is using a compound from a kid’s science project kit, and it seems to work very well. Of course, you could just grab your smartphone. This might be worth thinking about if you are building a laser cutter air assist, too.

Continue reading “Simulating Air Flow For 3D Printing”