Delicious Vector Game Console Runs Pac-Man, Tetris, And Mario

The only question we have about [mitxela]’s DIY vector graphics game console is: Why did he wait five years to tell the world about it?

Judging by the projects we’ve seen before, from his tiny LED earrings to cramming a MIDI synthesizer into both a DIN plug and later a USB plug, [mitxela] likes a challenge. And while those projects were underway, the game console you’ll see in the video below was sitting on the shelf, hidden away from the world. That’s a shame, because this is quite a build.

Using a CRT oscilloscope in X-Y mode as a vector display, the console faithfully reproduces some classic games, most of which, curiously enough, were not originally vector games. There are implementations of the Anaconda, RetroRacer, and AstroLander minigames from Timesplitter 2. There are also versions of Pac-Man, Tetris, and even Super Mario Brothers. Most of the games were prototyped in JavaScript before being translated into assembly and placed onto EEPROM external cartridges, to be read by the ATMega128 inside the console. Sound and music are generated using the ATMega’s hardware timers, with a little help from a reverse-biased transistor for white noise and a few op-amps.

From someone who claims to have known little about electronics at the beginning of the project, this is pretty impressive stuff. Our only quibbles are the delay in telling us about it, and the lack of an Asteroids implementation. The former is forgivable, though, because the documentation is so thorough and the project is so cool. The latter? Well, one can hope.

Continue reading “Delicious Vector Game Console Runs Pac-Man, Tetris, And Mario”

Unique Flat-Screen Display Put To Use In CRT Game Boy

The cathode-ray tube ruled the display world from the earliest days of TV until only comparatively recently, when flat-screen technology began to take over. CRTs just kept getting bigger over that time until they reached a limit beyond which the tubes got just too bulky to be practical.

But there was action at the low end of the CRT market, too. Tiny CRTs popped up in all sorts of products, from camcorders to the famous Sony Watchman. One nifty CRT from this group, a flat(tish) tube from a video intercom system, ended up in [bitluni]’s lab, where he’s in the process of turning it into a retro Game Boy clone with a CRT display. The display, which once showed the video from a door-mounted camera, was a gift from a viewer. Date codes on the display show it’s a surprisingly recent device; were monochrome TFT displays that hard to come by in 2007? Regardless, it’s a neat design, with the electron gun shooting upward toward a curved phosphor screen. With a little Google-assisted reverse engineering, [Bitluni] was able to track done the video connections needed to use his retro game console, which uses an ESP32 that outputs composite video. He harvested the intercom speaker for game audio, added a temporary Nintendo gamepad, and soon he was playing Tetris in glorious monochrome on the flat screen.

The video below is only the first in a series where the prototype will be stuffed into one nice tidy package. It certainly still needs some tweaking, but it’s off to a great start. We can’t wait to see the finished product.

Continue reading “Unique Flat-Screen Display Put To Use In CRT Game Boy”

A YouTube Subscriber Counter With A Tetris Twist

When it comes to YouTube subscriber counters, there’s not much wiggle room for creativity. Sure, you can go with Nixies or even more exotic displays, but in the end a counter is just a bunch of numbers.

But [Brian Lough] found a way to jazz things up with this Tetris-playing YouTube sub counter. For those of you not familiar with [Brian]’s channel, it’s really worth a watch. He tends toward long live-stream videos where he works on one project for a marathon session, and there’s a lot to learn from peeking over his virtual shoulder. This project stems from an earlier video, posted after the break, which itself was a condensation of several sessions hacking with the RGB matrix that would form the display for this project. He’s become enamored of the cheap and readily-available 64×32 pixel RGB displays, and borrowing an idea from Mc Lighting author [toblum], he decided that digits being assembled from falling Tetris blocks would be a nice twist. [Brian] had to port the Tetris-ifying code to Arduino before getting the ESP8266 to do the work of getting the subs and updating the display. We think the display looks great, and the fact that the library is open and available means that you too can add Tetris animations to your projects.

None of this is to say that more traditional sub counters can’t be cool too. From a minimalist display to keeping track of all your social media, good designs are everywhere. And adding a solid copper play button is a nice touch too.

Continue reading “A YouTube Subscriber Counter With A Tetris Twist”

Tiny Sideways Tetris On A Business Card

Everyone recognizes Tetris, even when it’s tiny Tetris played sideways on a business card. [Michael Teeuw] designed these PCBs and they sport small OLED screens to display contact info. The Tetris game is actually a hidden easter egg; a long press on one of the buttons starts it up.

It turns out that getting a playable Tetris onto the ATtiny85 microcontroller was a challenge. Drawing lines and shapes is easy with resources like TinyOLED or Adafruit’s SSD1306 library, but to draw those realtime graphics onto the 128×32 OLED using that method requires a buffer size that wouldn’t fit the ATtiny85’s available RAM.

To solve this problem, [Michael] avoids the need for a screen buffer by calculating the data to be written to the OLED on the fly. In addition, the fact that the smallest possible element is a 4×4 pixel square reduces the overall memory needed to track the screen contents. As a result, the usual required chunk of memory to use as a screen buffer is avoided. [Michael] also detailed the PCB design and board assembly phases for those of you interested in the process of putting together the cards using a combination of hot air reflow and hand soldering.

PCB business cards showcase all kinds of cleverness. The Magic 8-Ball Business Card is refreshingly concise, and the project that became the Arduboy had milled cutouts to better fit components, keeping everything super slim.

Building Badges The Hard Way

What’s a hacker to do to profess his love for his dearest beloved? [Nitesh Kadyan] built his lady-love this awesome LED pendant – the LED BLE Hearty Necklace Badge.

The hardware is pretty vanilla by today’s hacker standards. An ATMega328p  does most of the heavy lifting. An HM-11 BLE module provides connection to an Android mobile app. Two 74HC595 shift registers drive 16 columns of red LEDs and a ULN2803 sinks current from the 8 rows. The power section consists of a charger for the 320mAh LiPo and an LDO for the BLE module. All the parts are SMD with the passives mostly being 0603, including the 128 LEDs.

128 LEDs soldered wrong way around

[Nitesh] didn’t get a stencil made for his first batch of boards, so all the parts were painstakingly soldered manually and not in a reflow oven. And on his first board, he ended up soldering all of the LED’s the wrong way around. Kudos to him for his doggedness and patience.

The Arduino code on the ATmega is also quite straightforward. All characters are stored as eight bytes each in program memory and occupy 8×8 pixels on the matrix. The bytes to be displayed are stored in a buffer and the columns are left shifted fast enough for the marquee text effect. The Android app is built by modifying a demo BLE app provided by Google. The firmware, Android app, and the KiCAD design files are all hosted on his Github repository.

[Nitesh] is now building a larger batch of these badges to bring them to hillhacks – the annual hacker-con for making and hacking in the Himalayas. Scheduled for later this month, you’ll have to sign up on the mailing list for details and if you’d like to snag one of these badges. To make it more interesting, [Nitesh] has added two games to the code – Tetris and Snakes. Hopefully, this will spur others to create more games for the badge, such as Pong.

Continue reading “Building Badges The Hard Way”

Hackaday Links Column Banner

Hackaday Links: October 22, 2017

A few weeks ago, the popcorn overflowed because of an ambiguous tweet from AdafruitDid Adafruit just buy Radio Shack? While everyone else was foaming at the mouth, we called it unlikely. The smart money is that Adafruit just bought a few fancy stock certificates, incorporation papers, and other official-looking documents at the Radio Shack corporate auction a few months ago. They also didn’t pick up that monster cache of Trash-80s, but I digress.

Here’s some more popcorn: Adafruit just applied for the ‘Radiofruit’ trademark. Is this Adafruit’s play to take over the Radio Shack brand? Probably not; they put a bunch of radio modules on Feather boards, and are just doing what they do. It does demonstrate Adafruit’s masterful manipulation effective use of social media, though.

Remember those 2D tilty maze rolling marble labyrinth game things? Here’s a 3D version on Kickstarter. It’s handheld, so this really needs a gimbal and associated twisty knobs.

In a video making the meme rounds, someone found an easter egg in the gauge cluster of a Russian GAZ van. It plays Tetris.

It’s Sunday, so it’s time to talk Star Trek. Here’s something interesting that hit my email: a press release telling me, “Trekkies Scramble To Get The First Toothbrush In Space As Seen On Star Trek Discovery”. This is the toothbrush, and here is the press kit. Dumb? Not at all. Star Trek has a long history of using off-the-shelf tools and devices for props. For example, the hyperspanners seen in Star Trek: Enterprise were actually this non-contact thermometer available from Harbor Freight. At least the hyperspanners and thermometers came out of the same injection mold.

There’s a new LimeSDR board on CrowdSupply. It extends any LimeSDR to 10 GHz.

Kerf bending is the application of (usually laser-cut) slots to bend plywood around corners. You’ve seen it a million times before, and done correctly the technique can produce some very interesting results. What about metal, though? You need a pretty big laser for that. [Proto G] is using a 2000 W fiber laser to experiment with kerf bending in stainless steel. It works as you would expect, and we eagerly await someone to replicate this, if only to see another 2000 Watt laser in action.

Building A Working Game Of Tetris In Conway’s Game Of Life

If you haven’t been following along with Conway’s Game of Life, it’s come a long way from the mathematical puzzle published in Scientific American in 1970. Over the years, mathematicians have discovered a wide array of constructs that operate within Life’s rules, including many that can be leveraged to perform programming functions — logic gates, latches, multiplexers, and so on. Some of these creations have gotten rather huge and complicated, at least in terms of Life cells. For instance, the OTCA metapixel is comprised of 64,691 cells and has the ability to mimic any cellular automata found in Life.

A group of hackers has used OTCA metapixels to create a Tetris game out of Life elements. The game features all 7 shapes as well as the the movement, rotation, and drops one would expect. You can even preview the next piece. The game is the creation of many people who worked on individual parts of the larger program. They built a RISC computer out of Game of Life elements, as well as am assembler and compiler for it, with the OTCA metapixels doing the heavy lifting. (The image at the top of the post is the program’s data synchronizer.

Check out the project’s source code on GitHub, and use this interpreter. Set the RAM to 3-32 and hit run.

For a couple of other examples of Life creations, check out the Game of Life clock and music synthesized from Life automata we published earlier.