Make Cars Safer By Making Them Softer

Would making autonomous vehicles softer make them safer?

Alphabet’s self-driving car offshoot, Waymo, feels that may be the case as they were recently granted a patent for vehicles that soften on impact. Sensors would identify an impending collision and adjust ‘tension members’ on the vehicle’s exterior to cushion the blow. These ‘members’ would be corrugated sections or moving panels that absorb the impact alongside the crumpling effect of the vehicle, making adjustments based on the type of obstacle the vehicle is about to strike.

Continue reading “Make Cars Safer By Making Them Softer”

So, You’ve Never Made A Spaceframe Before

It is sometimes a surprise in our community of tinkerers, builders, hackers, and makers, to find that there are other communities doing very similar things to us within their own confines, but in isolation to ours. A good example are the modified vehicle crowd. In their world there are some epic build stories and the skills and tools they take for granted would not in any way be unfamiliar to most Hackaday readers.

As part of a discussion about electric vehicles near where this is being written, someone tossed an interesting link from that quarter into the mix; a two-part treatise on building ultra-light-weight tubular frame vehicles. Or space frames, as you might know them.

You might think that making a tubular framed for a vehicle would be a straightforward enough process, but as the article explains, it contains within it a huge well of geometry and metallurgy to avoid a creation that is neither too heavy nor contains excessive weakness. Part one deals mainly with prototyping a frame, the selection of materials and joining tubes, while part two goes into more detail on fabrication. The author likes brazing which may offend the sensibilities of welding enthusiasts, but you can substitute your jointing tech of choice.

A particularly neat suggestion, one of those simple ideas that make you wish you’d thought of it yourself, is to prototype a frame in miniature with copper wire and solder to evaluate the effect of different forces upon it before you commit your final design to steel.

The articles are a few years old, but no less pertinent in the information they contain. Meanwhile if you are a spaceframe veteran, then you may have your own suggestions for the comments below. And if you’d like some tips on how not to build a spaceframe, have a look at this motorcycle.

Thank you [JHR] and [Jarkman] for the tips.

Simple And Effective Car Lock Jammer Detector

[Andrew Nohawk], has noticed a spike of car break-ins and thefts — even in broad daylight — in his native South Africa. The thieves have been using remote jammers. Commercial detectors are available but run into the hundreds of dollars. He decided to experiment with his own rig, whipping up a remote jamming ‘detector’ for less than the cost of a modest meal.

Operating on the principle that most remote locks work at 433MHz, [Nohawk] describes how criminals ‘jam’ the frequency by holding down the lock button on another device, hoping to distort or outright interrupt the car from receiving the signal to lock the doors. [Nohawk] picked up a cheap 433MHz receiver (bundled with a transceiver), tossed it on a breadboard with an LED connected to the data channel of the chip on a 5V circuit, and voila — whenever the chip detects activity on that frequency, the LED lights up. If you see sustained activity on the band, there’s a chance somebody nearby might be waiting for you to leave your vehicle unattended.

If you want to know more about how these jamming attacks work, check out [Samy Kamkar’s] talk from the Hackaday SuperConference.

Continue reading “Simple And Effective Car Lock Jammer Detector”

Glow-In-The-Dark Antenna Helps You Spot Your Car At Night

It’s late, and you’re lost in a sea of cars trying to remember where you parked. If only your vehicle had a glow-in-the-dark antenna to make it easier to find, you wouldn’t be in this situation. Faced with just such a problem himself, Instructables user [botzendesign] has put together a handy tutorial to do just that.

[botzendesign] first removed the antenna and lightly abraded it to help the three coats adhesion promoter do its job. A white base coat of vehicle primer was applied — lightly, so it doesn’t crack over time — and once it had set, three coats of Plasti Dip followed. Before that had a chance to dry, he started applying the glow-in-the-dark powder, another coat of Plasti Dip, repeating four more times to ensure the entire antenna had an even coat of the photo-luminescent powder and then letting it dry for 24 hours. Continue reading “Glow-In-The-Dark Antenna Helps You Spot Your Car At Night”

Scratch-Built EV From Hoverboards

Electric vehicles are everywhere now. Even though battery technology hasn’t had the breakthrough that we need to get everyone out driving an electric car, the price for batteries has dropped enough that almost anything else is possible. The hoverboard was proof of this: an inexpensive electric vehicle of sorts that anyone who was anyone in 2015 had. Taking his cue from there, [Harris] used off-the-shelf parts normally used for hoverboards to build his own battery-powered trike.

The trike is homemade from the ground up, too. The H-frame was bolted together using steel and lots and lots of bolts. Propulsion comes from a set of hub motors that are integrated into the wheels like a hoverboard or electric bicycle would have. Commonly available plug-and-play lithium batteries make up the power unit and are notably small. In fact, the entire build looks like little more than a frame and a seat, thanks to the inconspicuous batteries and hub motors.

Continue reading “Scratch-Built EV From Hoverboards”

Books You Should Read: The Car Hacker’s Handbook

I just had my car in for an inspection and an oil change. The garage I take my car to is generally okay, they’re more honest than a stealership, but they don’t cross all their t’s and dot all their lowercase j’s. A few days after I picked up my car, low and behold, I noticed the garage didn’t do a complete oil change. The oil life indicator wasn’t reset, which means every time I turn my car on, I’ll have to press a button to clear an ominous glowing warning on my dash.

For my car, resetting the oil life indicator is a simple fix – I just need to push the button on the dash until the oil life indicator starts to blink, release, then hold it again for ten seconds. I’m at least partially competent when it comes to tech and embedded systems, but even for me, resetting the oil life sensor in my car is a bit obtuse. For the majority of the population, I can easily see this being a reason to take a car back to the shop; the mechanic either didn’t know how to do it, or didn’t know how to use Google.

The two most technically complex things I own are my car and my computer, and there is much more information available on how to fix or modify any part of my computer. If I had a desire to modify my car so I could read the value of the tire pressure monitors, instead of only being notified when one of them is too low, there’s nowhere for me to turn.

2015 was the year of car hacks, ranging from hacking ECUs to pass California emissions control standards, Google and Tesla’s self-driving cars, to hacking infotainment systems to drive reporters off the road. The lessons learned from these hacks are a hodge-podge of forum threads, conference talks, and articles scattered around the web. While you’ll never find a single volume filled with how to exploit the computers in every make and model of automobile, there is space for a reference guide on how to go about this sort of car hacking.

I was given the opportunity to review The Car Hacker’s Handbook by Craig Smith (259p, No Starch Press). Is it a guide on how to plug a dongle into my car and clear the oil life monitor the hard way? No, but you wouldn’t want that anyway. Instead, it’s a much more informative tome on penetration testing and reverse engineering, using cars as the backdrop, not the focus.

Continue reading “Books You Should Read: The Car Hacker’s Handbook”

Nissan Leaf Batteries Upgrade Old Truck Conversion

[Jay]’s Chevy S-10 electric conversion needed new batteries. The conversion was originally done with a bank of lead acids underneath the truck bed. With lithium battery factories so large they can boost an entire state’s economy being built, [Jay] safely assumed that it just wasn’t worth it to spend the money to replace it with a new set of the same.

Just like unwrapping a present, from around a tree.
One brand new battery pack!

You should remember the beginnings of this story from our coverage nearly a year ago. Being the kind of clever you’d expect from someone who did their own EV conversion, he purchased a totaled (yet nearly new) Nissan Leaf with its batteries intact. It took a little extra work, but after parting out the car and salvaging the battery packs for himself he came out ahead of both a new set of replacement lead acids and an equivalent set of lithium cells.

He has just completed the first test drives with the conversion, having built 48 Leaf cells into blocks resembling the volumes the old batteries occupied. He had to add some additional battery management, but right-off-the-bat, the conversion netted him more amps and 650lbs (295kg) less weight for the same power.  Nice!

We linked to all the posts tagged leaf on [Jay]’s blog. There’s a lot going on, and the articles aren’t all linked to each other. It’s a really cool build and there are definitely tricks to learn throughout the whole process. If you have an hour to kill, [Jay] recorded the entire 26-hour process in a 66-minute video that is embedded below. It’s fun to watch him build up and mount the different modules and gives you a deep appreciation for his devotion to the project.

Continue reading “Nissan Leaf Batteries Upgrade Old Truck Conversion”