ESP32 Hamster Wheel Tracker Tweets Workout Stats

Even with all the hamster wheel trackers out there (and on this site) there’s room for improvement. [Bogdan] upgraded his hamster wheel from an Arduino and datalogging shield to an ESP32, and unleashed some new capabilities one does not ordinarily associate with hamster wheels.

[Bogdan]’s project logs distance in feet, duration of current session in time, RPM, overall revolutions, speed in MPH, and overall number of sessions, as well as a couple of system monitoring stats. It also tracks multiple wheels, as [Piontek] (the hamster) has two. However, thanks to the ESP32, [Bogdan]’s wheel tracker tweets its stats and updates a ThingSpeak dashboard with [Piontek]’s workouts.

In addition to its functionality, [Bogdan] made a point to make the project look and feel FINISHED. He designed custom 3D parts including a front plate, hooks for attaching the control box to the cage, and mounts for attaching the sensor to the wheel.

Continue reading “ESP32 Hamster Wheel Tracker Tweets Workout Stats”

Google Home Meets ESP8266

[Luc Volders] is building his own smart house with the help of Google Home and an ESP-8266. Inspired by the house computers from the TV show, Eureka [Luc] created an IoT ecosystem using a mix of off the shelf devices and open source software.

There are about a thousand ways to create a DIY smart home these days. All of them involve setting up a command receiver (like Amazon’s Echo or Google Home), some sort of cloud connection, and an end device controller. This can get complex for the beginner. [Luc’s] article is great because he walks is through each step tutorial style. He even keeps things simple by programming the ESP8266 using BASIC with ESP-BASIC.

[Luc] uses If This Then That (IFTT) as his cloud service. IFTT is the glue between Google’s cloud service and the ESP8266 connected to his home WiFi network. Speaking of which, [Luc] shows how to set up port forwarding on the router so all accesses to port 8085 go to the ESP8266. Not exactly strong security – but it’s better than opening the entire home network.

You don’t need a real Google home device for this hack. You can build your own with a Raspberry Pi. Once that is set up you can do everything from turning on lights to watering your lawn.

Continue reading “Google Home Meets ESP8266”

Sense All the Things with a Synthetic Sensor

What will it take to make your house smarter than you? Judging from the price of smart appliances we see in the home centers these days, it’ll take buckets of cash. But what if you could make your home smarter — or at least more observant — with a few cheap, general purpose “supersensors” that watch your every move?

Sounds creepy, right? That’s what [Gierad Laput] and his team at the Carnegie Mellon Human-Computer Interaction Institute thought when they designed their broadband “synthetic sensor,” and it’s why they purposely omitted a camera from their design. But just about every other sensor under the sun is on the tiny board: an IR array, visible light sensors, a magnetometer, temperature, humidity, and pressure sensors, a microphone, PIR, and even an EMI detector. Of course there’s also a WiFi module, but it appears that it’s only for connectivity and not used for sensing, although it clearly could be. All the raw data is synthesized into a total picture of the goings on in within the platform’s range using a combination of machine learning and user training.

The video after the break shows the sensor detecting typical household events from a central location. It’s a powerful idea and we look forward to seeing how it moves from prototype to product. And if the astute reader recognizes [Gierad]’s name, it might be from his past appearance on these pages for 3D-printed hair.

Continue reading “Sense All the Things with a Synthetic Sensor”

Say Hello to This Cortana Hologram

Halo’s Cortana enters the real world with this internet appliance. [Jarem Archer] has built an amazing “holographic” home for Cortana of Halo and Windows fame. The display isn’t really a hologram, it uses the age-old Pepper’s ghost illusion. A monitor reflects onto 3 angled half mirrored panels. This creates a convincing 3D effect. Cortana herself is a 3D model. [Jarem’s] wife provided gave Cortana her moves by walking in front of dual Kinect depth-sensing cameras. This motion capture performance drives the 3D Cortana model on the screen.

The brain behind this hack is the standard Windows 10 Cortana voice assistant. Saying “Hey Cortana” wakes the device up. To make the whole experience more interactive, [Jarem] added a face detection camera to the front of the device. When a face is detected, the Cortana model turns toward the user. Even if several people are watching the device, it would seem as if Cortana was “talking to” one person in the audience.

The cherry on top of this hack is the enclosure. [Jarem] 3D printed a black plastic stage. An Arduino drives RGB LEDs whenever Cortana is activated. The LEDs project a blue glue that works well with the Pepper’s ghost illusion. The result is a project that looks like something Microsoft might have cooked up in one of their research labs.

Continue reading “Say Hello to This Cortana Hologram”

Just In Time For Summer: A Remote Controlled Snowblower

It’s May, and you know what that means: we’re winding down from a worldwide celebration of the worker, pollen is everywhere, Hackaday readers in the southern hemisphere are somehow offended, and somewhere, someone is finishing up a remote-controlled snow blower build.

In this nine-part, two-hour-long video series, [Dave] covers the planning and fabrication of one of the most coveted of all cold weather yard instruments. It’s a remote-controlled snow blower. Just think: instead of bundling up to go blow the driveway off, [Dave] can get all the snow off his driveway from the comfort of his living room window. Sure, it may not sound like a big deal now that it’s Crocs & Socks weather, but this is going to be a great invention in seven or eight months.

This snow blower robot is built around two motors taken from an electric wheelchair. Most snowblowers already have tracks, so the ever-important traction for this build is already taken care of. A linear actuator takes care of the angle of the ‘scoop’, and a clever confabulation of bicycle sprockets, chain, and a motor allows the ‘chute’ of the snowblower to be pointed in any direction. The electronics are simple enough – a normal, off-the-shelf RC transmitter and receiver handles the wireless communication while an Arduino takes those signals and turns them into something the relays and motors understand.

This is one of the better build vlogs we’ve seen. There are nine parts to this build, we’ve included the final, wrapup video below.

Continue reading “Just In Time For Summer: A Remote Controlled Snowblower”

Keep the Burglars Away With Some Pi

Ten years ago, we never imagined we would be able to ward off burglars with Pi. However, that is exactly what [Nick] is doing with his Raspberry Pi home security system.

We like how, instead of using a standard siren, [Nick] utilized his existing stereo system to play a custom audio file that he created. (Oh the possibilities!) How many off the shelf alarm systems can you do that with?

The Pi is the brains of the operation, running an open source software program called Home Assistant. If any of the Z-Wave sensors in his house are triggered while the alarm system is armed, the system begins taking several actions. The stereo system is turned on via IR so that the digital alarm audio file can be played. Lights flash on and off. An IP camera takes several snapshots and emails them to [Nick].

Home Assistant didn’t actually have the ability to send images in an email inline at the time that [Nick] was putting together his system. What did [Nick] do about that? He wrote some code to give it that ability, and submitted it through GitHub. That new code was put into a later version of the program. Ah, the beauty of open source software.

Perhaps the most important part of this project is that there were steps taken to help keep the wife-approval factor of the system on the positive side. For example, he configured one of the scripts so that even if the alarm is tripped multiple times in succession, the alarm won’t play over itself repeatedly.

This isn’t [Nick’s] first time being featured here. Check out another project of his which involves a couple of Pi’s communicating with each other via lasers.

 

Conflict Escalates Between Brilliant Rat and 555 Timer

After [Casey Connor] captured and relocated a number of unwanted rodents in his home using commercially available live traps, he was presented with a problem: a rat had learned to avoid them.

In an epic, and adorable, conflict caught on video (and embedded below),  he documents the  designs used and how the rat escaped them by either recognizing the trap, or sheer agility. We can only tip our hat to the determination of both parties.

All the trap mechanisms are based on a 555 monostable solenoid triggering circuit that ensures that a pulse of sufficient duration is sent to the solenoid to trigger the trap correctly. This way even intermittent contacts will trigger the trap rather than just causing the solenoid to twitch without fully actuating. This is the same technique used to debounce a switch using a 555 timer.

A Raspberry Pi Zero detects motion using an IR camera to film the interesting parts. This is also a good indicator for when you’ve trapped your quarry – if you’re trying be humane then leaving it in a trap for days is counterproductive.

With the time and effort we spend building better and more complex rodent traps, we sometimes wonder who has cleverly trapped whom.

Continue reading “Conflict Escalates Between Brilliant Rat and 555 Timer”