An Obsessively Thorough Battery (and more) Showdown

Lots of battery reviews and more!

There are a number of resources scattered across the Internet that provide detailed breakdowns of common products, such as batteries, but we haven’t seen anything quite as impressive as this site. It’s an overwhelming presentation of data that addresses batteries of all types, including 18650’s (and others close in size)26650’s, and more chargers than you can shake a LiPo at. It’s an amazing site with pictures of the product both assembled and disassembled, graphs for charge and discharge rates, comparisons for different chemistries, and even some thermal images to illustrate how the chargers deal with heat dissipation.

Check out the review for the SysMax Intellicharger i4 to see a typical example. If you make it to the bottom of that novel-length repository of information, you’ll see that each entry includes a link to the methodology used for testing these chargers.

But wait, there’s more! You can also find equally thorough reviews of flashlights, USB chargers, LED drivers, and a few miscellaneous overviews of the equipment used for these tests.

[Thanks TM]

The Reason Dead Batteries Bounce

Battery

For the last few years, very well-informed people have been able to tell if an alkaline battery is good or not simply by dropping them. When dropped from an inch or two above a hard surface, a good battery won’t bounce, and will sometimes land standing up. A dead battery, on the other hand, will bounce. Thanks to [Lee] and a few of his friends, we now know why this happens.

While hanging out with a few of his buddies, [Lee] was able to condense all the arguments on why dead batteries bounce to two theories. The first theory, the ‘bounce theory’ said dead batteries had an increase in outgassing in the battery, increasing the pressure in the battery, which increases the spring constant of the battery itself. The second theory, the ‘anti-bounce theory’, said the gel-like properties of the electrolyte worked as a sort of mass damper.

[Lee] designed an experiment to test the outgassing ‘bounce theory’ of bouncing batteries. Instead of dropping a battery, an object – in this case a brass slug – was dropped onto both good and bad batteries. There was no difference. Even after holes were drilled to vent any gasses inside the battery, the brass slug bounced off both good and bad batteries the same way.

This means the reason dead alkaline batteries bounce is due to the electrolyte. [Lee] cut open a few AA cells and found the electrolyte in a good battery was a mushy mess of chemicals. In the dead battery, this same electrolyte hardened into a solid mass. [Lee] compares this to an anti-bounce hammer.

Finally, more than a year after most of us learned about bouncing dead batteries thanks to [Dave Jones]‘ video, we have an answer. It’s a chemical change in the electrolyte that turns it from a goo to a solid that makes dead batteries bounce.

[Read more...]

Electric Chainsaw Teardown

An electric chainsaw with its case removed

For his Beyond Unboxing series, [Charles] tore apart a Ryobi cordless chainsaw to get a better look at how this battery powered tool works.

Inside he found a three-phase motor and controller. This motor looks like it could be useful in other projects since it has a standard shaft. The battery pack was popped open to reveal a set of LG Chem 21865 cells, and some management hardware.

With all the parts liberated from the original enclosure, [Charles] set up the motor, controller, and battery on the bench. With a scope connected, some characterization of the motor could be done. A load was applied by grabbing the spinning shaft with welding gloves. [Charles] admits that this isn’t the safest way to test a motor.

While it is a very fast motor, the cut-in speed was found to be rather low. That means it can’t start a vehicle from a stop, but could be useful on e-bikes or scooters which are push started.

This chainsaw a $200 motor, controller, and battery set that could be the basis of a DIY scooter. It sounds great too, as the video after the break demonstrates.

[Thanks to Dane for the tip!]

[Read more...]

Tearing Down a Cheap External USB Battery

[cpldcpu] recently received an external USB battery as a promotional gift and thought it would be a good idea to tear it down to see its insides. At first glance, he could see that the device included a USB micro-b socket used as a 5V input (for charging), a USB-A socket for 5V output, a blue LED to indicate active power out and a red one to indicate charging.

Opening the case revealed that most space was taken up by a 2600mAH ICR18650 Li-Ion battery, connected to a tiny PCB. A close inspection and a little googling allowed [cpldcpu] to identify the main components of the latter: a battery mangement IC, a 2A boost converter, a 3A Schottky diode, a few 2A N-Mosfets, a 300mA 2.5V LDO and an unknown 6-pin IC. It is very interesting to learn that every last one of these components seems to be sourced from China, which may explain why this USB battery is given for free. Do you think they designed it in-house and outsourced the manufacturing, or is this a product Digi-Key simply bought and put their name on?

Editorial Note: Digi-Key is an advertiser on Hackaday but this post is not part of that sponsorship. Hackaday does not post sponsored content.

[Read more...]

CFL + Bugzapper = Battery Operated Camping Light

CFLBugzapper_01_20

Knowing different ways of generating light is a great skill to have, so go ahead and add this one to your arsenal by combining a Bugzapper with a CFL Light Bulb.

Sure a CFL(Compact Fluorescent Lamp) works just fine on its own if you have AC mains, but what we’re talking about here is getting the light bulb to work off of a single D battery. We featured a similar hack a few months back by using a Joule-Thief to get the high voltage for the fluorescent tube, but if you can’t get your hands on discrete components, [Jan] shows us another way by gutting a tennis racket bugzapper for its booster board. Knowing that the bugzapper steps up the 3V to about 2000V, he decided to see if that same circuit would run off a single 1.5V D battery and achieve the voltage required to drive a CFL tube. After carefully removing the electronics from the CFL housing, [Jan] was able to directly connect the booster board to the electrode wires of the fluorescent tube, and voila; he now has a D-Battery operated camp light that has a run time of over 200 hours.

It would be interesting to see how this hack compares to the Joule-Thief method in terms of brightness and run-time. Before you go and scrap the parts out of the CFL light bulb, make sure you check out this detailed breakdown of popular CFL light bulbs.

Reviving a Stubborn Laptop Battery

Panasonic Toughbook CF-28

We’ve all gotten bored of certain toys and left them on the shelf for months on end. But what do you do when this prolonged period kills the batteries? Well if you’re [Andrew] you take apart the battery pack and bring it back to life!

[Andrew] picked up one of those Panasonic Toughbooks awhile back and although it’s hardly a top of the line laptop specs-wise, it does have some pretty cool features: it’s shock-proof, splash-proof, and extreme-temperature-proof. It even had a touch screen before touchscreens were cool. Despite its durability, however, the laptop was left to sit for a bit too long, and the battery pack no longer accepted a charge.

[Andrew] quickly disassembled the battery pack and began measuring the cells with his trusty multimeter, assuming just one cell had gone bad. Curiously though, no cells reported 0V. What he did find was that each cell and sub-pack reported 2.95V, which is 0.05V below the “safe operating limits” of typical lithium ion cells. [Read more...]

Arduino-Based Power Failure Alert System

arduinoPowerFailBox

When the power went out at his parents’ shop and ruined the contents of their fridge, [Lauters Mehdi] got to work building a custom power failure alert system to prevent future disasters. Although some commercial products address this problem, [Lauters] decided that he could build his own for the same cost while integrating a specific alert feature: one that fires off an SMS to predefined contacts upon mains power failure.

The first step was to enable communication between an Arduino Micro and a Nokia cell phone. His Nokia 3310 uses FBus protocol, but [Lauters] couldn’t find an Arduino library to make the job easier. Instead, he prototyped basic communication by running an Arduino Uno as a simple serial repeater to issue commands from the computer directly to the phone, and eventually worked out how to send an SMS from the ‘duino. [Lauters] then took the phone apart and tapped into the power button to control on/off states. He also disconnected the phone’s battery and plugged it into an attached PCB. The system operates off mains power but swaps to a 1000mAH 9V backup battery during a power outage, logging the time and sending out the SMS alerts. A second message informs the contacts when power has been restored.

Head over to [Lauters's] project blog for schematics and photos, then see his GitHub for the source code. If you want to see other SMS hacking projects, check out the similar build that keeps a remote-location cabin warm, or the portable power strip activated by SMS.

Follow

Get every new post delivered to your Inbox.

Join 93,815 other followers