The Geek Group Installs Robot, Destroys CRT Monitor


The Geek Group recently documented the process of overhauling part of their workspace to accommodate Project Jeff, a massive KUKA KR-350/1 industrial robot.

We don’t see many behind the scenes industrial-scale projects here at Hackaday, but we’re definitely impressed with the clever techniques employed to pull off this precision install. At around 5 inches deep, the original floor was far too thin to handle the weight and tortional loads imposed by Project Jeff, so The Geek Group carved out a 15′ square space of old concrete and dumped it piece by piece in the rubbish. They then dug a new hole to a depth of 2.5′ and filled it with a fresh pour that amounted to 67,500 pounds of concrete. Sheesh.

That concrete will inevitably expand and move around, which meant installing a pool-noodle-looking slip cover to protect a buried conduit from damage, as well as placing some gaskets around the edges to prevent cracking while maintaining a seal. Around 10 minutes into the video, they tackle the challenge of embedding bolts that connect to the robot’s base; it takes some patience and creative ladder positioning to fit the template in the correct position.

As an added treat, The Geek Group smashed a CRT monitor in our honor, and while they claim software limitations and a steel frame prevented Project Jeff from completely annihilating the monitor, we like to think the skull and cross-wrenches just refused to be destroyed. Because, you know, science. Videos after the break.

[Read more...]

A concrete table with a little blinky built in


Members of the Warp Zone hackerspace wanted a coffee table that was beyond ordinary. They ended up pouring a concrete base for the glass top (translated). There were several things to address during the design. First off, they wanted to integrate LEDs in the concrete sides. Some consideration had to be made for portability as concrete is very heavy. The final piece of the puzzle was deciding what kind of hardware to place beneath the frosted glass.

The legs were designed with a large cut-out area to keep them as light weight as possible. The cross piece has a set of voids spelling out the name of the hackerspace with some green LEDs. This was accomplished by placing foam cut-outs of each letter in the forms before for concrete was poured. They sealed around each letter with silicone, but still had some seepage most likely caused when jostling the form to help remove air bubbles. Straws were placed in the foam to allow a cable pass through for the electronics. After everything was in place they filled the voids with hot glue to act as a diffuser.

There aren’t a lot of details about the RGB LEDs under the frosted glass. But you can see the light show they produce in the clip after the break.

[Read more...]

They may be for developing countries, but we want a concrete lathe

At the 2009 Ghana Maker Faire, [Pat Delany] met a young carpentry student that saved for three months to buy a cheap Chinese wood plane. He was confounded by this distribution of resources, so [Pat] created the Concrete Lathe project that aims to get useful machine tools out to where they’re needed most.

The idea for concrete machine tools came out of the US involvement in World War I. America had been staunchly isolationist before committing to the war, and production of arms did not match the needed output. A man named L.I. Yeomans came up with the idea of building concrete lathes to produce artillery shells for the war effort.

Of course, the concrete lathe project is a bit more peaceful in its intentions. The concrete lathe is meant to be a cheap machine tool for developing nations. Both the concrete lathe and the Multimachine are meant to be built cheaply using scrap materials, reduce training time for machinists, and create other machine tools in a Reprap-like biological distribution.

There’s a ton of documentation on the concrete lathe wiki like the bed instructions torn from the pages of Ikea instructions, and the thread follower. While they’re still a lot of work and testing to be done, giving some manufacturing capability to those who need it most is a pretty noble cause.

Thanks [Rob] for sending this one in.

Unreal speaker build

These speakers are hand made and almost one of a kind. [Lluís Pujolàs] didn’t come up with the original design, but he sure did an amazing job of crafting them, including an eleven page build log (translated). They’re called the Odyssey 2, after the original design. The shell-shaped cavity on the bottom was built as a wooden skeleton first, then covered over for the finished shape. But the mid and high range enclosures were turned on a lathe from wood glued-ups. A serious machine shop is necessary to do this kind of woodworking. The bases are poured concrete, impregnated with lead beads to help with vibration isolation. At 330 pounds each it’s understandable that he tested them on wheels before parking them in their final position as seen above.

[Thanks Neorazz]

3D mineral printer

The last few days many people have been talking about the USC’s contour printer. It’s a device that prints concrete outlines with the hopes of eventually printing entire houses. Caterpillar has decided to back the initiative.

It reminded us of a project we came across at Maker Faire. [Leif Ames], [Matthew Bowman], [Marides Athanasiadis], and [Terrell Edwards] built a 3D Mineral Printer as their senior engineering design project at UC Santa Cruz. The printer works by first laying down a layer of dry concrete powder. It then selectively wets the powder where it wants a solid form. The reaction doesn’t require air to dry, so the next layer can be applied immediately. The printer only creates contours and the team imagines this being used to create temporary casting molds. The build envelop is nearly a cubic meter. When we talked to them, they were experimenting with many different types of material mixes. A video of the first test is after the break. [Read more...]