Finally, an Official Display for the Raspberry Pi

Yes, finally, and after years of work and countless people complaining on forums, there is a proper, official display for the Raspberry Pi.

It’s a 7-inch display, 800 x 480 pixel resolution, 24-bit color, and has 10-point multitouch. Drivers for the display are already available with a simple call of sudo apt-get update, and the display itself is available at Newark, the Pi Store (sold out) and Element14. There’s even a case available, and a stand ready to be sent off to a 3D printer.

As for why it took so long for the Raspberry Pi foundation to introduce an official display for the Pi, the answer should not be surprising for any engineer. It’s EMC, or electromagnetic compliance. The DPI (Display Parallel Interface) for the Pi, presented on the expansion header and used by the GertVGA adapter allows any Pi to drive two displays at 1920 x 1024, 60FPS. This DPI interface is an electrical nightmare that spews RF interference everywhere it goes.

raspberry-pi-touchscreen-thumbThe new display could have used the DSI (Display Serial Interface) adapter, or the small connector on the Pi that is not the camera connector. DSI displays are purpose-built for specific devices, though, and aren’t something that would or should be used in a device that will be manufactured for years to come. The best solution, and the design the Raspberry Pi foundation chose to go with, is a DPI display and an adapter that converts the Pi’s DSI output to something the display can understand.

The solution the Pi foundation eventually settled on is an adapter board that converts the DSI bus to DPI signalling. This of course requires an extra PCB, and the Foundation provided mounting holes so a Pi can connect directly to it.

While this is the first display to make use of the DSI interface, it will assuredly not be the last. The Pi Foundation has given us a way to use the DSI connector to drive cheap DPI displays. While the 800×480 resolution of the official display may be a bit small, there will undoubtedly be a few hardcore tinkerers out there that will take this adapter board and repurpose it for larger displays.

[Alex Eames] got his hands on the Pi Display a few weeks ago, you can check out his introductory video below.

Continue reading “Finally, an Official Display for the Raspberry Pi”

Spools of Thread for 6,400 Pixel Color Display

This is not an LED display, it’s a thread display. The hardware artists over at Breakfast, a Brooklyn based rapid product and prototype company, built this color display that uses spools of thread for each pixel. 6,400 spools to be exact.

Serious work went into this thing, and the results couldn’t be better. Check out the video after the break to see for yourself. The trick is to increase the surface area of the spools of thread. This is done by using the spool as a pulley which guides a 5.5 foot length of “threaded fabric”. Up close, the fabric looks as if it’s just wrapped around the wooden spool, but the extra length provides enough room for 36 different colors, each blending into the next in a gradient effect. Index the location of the fabric in each pixel system and you have a wide range of color options.

The piece was commissioned by clothing retailer Forever 21 and has even been given its own website. The display pulls Instagram photos with the #F21threadscreen hashtag and displays them. You can watch a live stream for the next week, and the dedicated site has a search feature to find a recording of your own photo by username.

We must once again give credit for producing the kind of advertising we want to see. This is both interesting and awesome. It gave some talented people work producing it, and sharing the details of the build is both interesting and inspiring for us. Want to see some more interesting advertising like this? Check out that Beck’s bottle used as a phonograph cylinder, and the extreme engineering used to separate Oreos.

Continue reading “Spools of Thread for 6,400 Pixel Color Display”

Excruciating Quest Turns Chromebook Pixel IPS Into Exquisite Extra Monitor

[Shen] wanted an extra monitor at his desk, but not just any monitor. He wanted something particularly special and unquestionably refined. Like any super-power-possessing engineer he set out to scratch his hacking itch and was sucked into a multi-year extravaganza. For the love of everything hardware we’re glad this one came in on the weekend. If we had spent all that time drooling during a weekday we’d be so far behind.

The final product is a desktop monitor on an articulated arm. It features a Chromebook Pixel’s IPS display in a custom-crafted case everything. The journey started out with two different LCD units, the first from a Dell L502x replacement display using a generic LVDS board. The results were meh; washed out colors and obvious pixellation, with display adjustments that left [Shen] with a grimace on his mug. Installment two was an iPad Retina display. This iteration required spinning his own boards (resulting in [Shen’s] discovery of OSH Park). Alas, 9.7″ was too small coupled with short-cable-requirements making this version a no-go.

chromebook-pixel-ips-driver-boardAnd so we arrive at the meat and potatoes of this one. [Shen] identified the IPS LCD display on Google’s first Chromebook Pixel laptop as the object of his desire. The hack takes him through sourcing custom display cables, spinning rev after rev of his own board, and following Alice down the rabbit hole of mechanical design. Nothing marginal is good enough for [Shen], we discovered this with his project to get real audio out of a computer. He grinds away at the driver board, the case design, the control presentation, and everything else in the project until perfection was reached. This work of art will stand the test of time as a life fixture and not just an unappreciated workhorse.

This one is not to me missed. Head over to [Shen’s] project entry on (don’t forget to give him a skull for this) and his blog linked at the top. We need to celebrate not only the people who can pull off such amazing work. But also the ones who do such a great job of sharing the story both for our enjoyment, and to inspire us.

A Simple And Inexpensive GPS Navigation Device

There are plenty of GPS navigation units on the market today, but it’s always fun to build something yourself. That’s what [middelbeek] did with his $25 GPS device. He managed to find a few good deals on electronics components online, including and Arduino Uno, a GPS module, and a TFT display.

In order to get the map images on the device, [middelbeek] has to go through a manual process. First he has to download a GEOTIFF of the area he wants mapped. A GEOTIFF is a metadata standard that allows georeferencing information to be embedded into a TIFF image file.  [middelbeek] then has to convert the GEOTIFF into an 8-bit BMP image file. The BMP images get stored on an SD card along with a .dat file that describes the boundaries of each BMP. The .dat file was also manually created.

The Arduino loads this data and displays the correct map onto the 320×240 TFT display. [middelbeek] explains on his github page that he is currently unable to display data from two map files at once, which can lead to problems when the position moves to the edge of the map. We suspect that with some more work and tuning this system could be improved and made easier to use, of course for under $25 you can’t expect too much.

Using LVDS Laptop Displays

No doubt anyone reading this has access to a few ancient laptops and the displays contained within. While those laptops are probably still stuck with a Gig of RAM and Windows ME, the display panels are probably still good. They don’t have HDMI, DVI, or VGA, though, which means those panels will need a converter.

[Jared] had a different idea. Instead of reusing laptop displays with a converter, why not connect them to an LVDS connector on some modern hardware? He had a RIoT board with a native LVDS connector, and with some clever reverse engineering and PCB fabrication he can put those old displays to work.

[Jared] had a very cool sunlight-readable ‘transflective’ LCD from on old Portege R500 laptop. If he was going to take apart one laptop to use with modern hardware, this was the one. Opening up the display he found a tiny connector but no obvious markings of what pins did what. The datasheet was also not to be found. By shorting two pins together, he could figure out what the pins were: shorting the clock freezes the screen, shorting the HSYNC and VSYNC means the screen loses sync. Blues, reds, and greens can be found the same way.

With the pins identified, a breakout board was in order. This is just a small board to break out the very small wires to solderable pads and a driver for the backlight. With that, and the RIoT with an LVDS output, [Jared] was able to use new hardware with this old but still serviceable display.

DIY Seven Segment Displays

[Esai] wanted to build an electronic clock from scratch. A noble quest, but ordinary seven-segment displays are just that – incredibly ordinary. Instead of a few displays that can be bought from the usual retailers for a dollar a piece, [Esai] made his own four digit, seven-segment display on some perfboard.

Before soldering 58 SMD LEDs to a small rectangle of perfboard, [Esai] traced out each segment with a marker. Two LEDs make up each segment, and they’re all connected to a breadboard-friendly pin header with 30 gauge wire.

Each segment is connected as a single column in the LED matrix, and each digit is a row. It’s a simple design, but there aren’t any resistors on this board. Hopefully [Esai] will be using a proper LED driver with this display; you really don’t want LEDs to burn out twice a day at 1:11.

11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber

In the high-voltage world, a Jacob’s ladder is truly a sight to behold. They are often associated with mad scientist labs, due to both the awesome visual display and the sound that they make. A Jacob’s ladder is typically very simple. You need a high voltage electricity source and two bare wires. The wires are placed next to each other, almost in parallel. They form a slight “V” shape and are placed vertically. The system acts essentially as a short-circuit. The voltage is high enough to break through the air at the point where the wires are nearest to each other. The air rises as it heats up, moving the current path along with it. The result is the arc slowly raising upwards, extending in length. The sound also lowers in frequency as the arc gets longer, and once [Gristc] tuned his system just right the sound reminds us of the Holy Trilogy.

We’ve seen these made in the past with other types of transformers that typically put out around 15,000 Volts at 30mA. In this case, [Gristc] supersized the design using a much beefier transformer that puts out 11,000 Volts at 300mA. He runs the output from the transformer through eight microwave oven capacitors as a ballast. He says that without this, the system will immediately trip the circuit breakers in his house.

In the demo video below, you can see just how large the arc is. It appears to get about 10 inches long before breaking with a sound different from any Jacob’s ladders we’ve seen in the past as well. Continue reading “11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber”