Upgraded GPS Now Accepts Voice Commands

[FreddySam] had an old Omnitech GPS which he decided was worthy of being taken apart to see what made it tick. While he was poking around the circuit board he found a couple solder pads labeled as ‘MIC1’. This GPS didn’t have a microphone. So, why would this unit have a mic input unless there is a possibility for accepting voice commands? [FreddySam] was about to find out.

The first step to get the system working was to add a physical microphone. For this project one was scavenged from an old headset. The mini microphone was removed from its housing and soldered to the GPS circuit board via a pair of wires. Just having the mic hanging out of the case would have been unsightly so it was tucked away in an otherwise unfilled portion of the case. A hole drilled in the case lets external sounds be easily picked up by the internalized microphone.

The hardware modification was the easy part. Getting the GPS software to recognize the newly added mic was a bit of a challenge. It turns out that there is only one map version that supports voice recognition, an old version; Navigon 2008 Q3. We suppose the next hack is making this work with new map packs. This project shows how a little motivation and time can quickly and significantly upgrade an otherwise normal piece of hardware. Kudos to [FreddySam] for a job well done.

Solar Tetroon Spooks Albuquerque

An interesting take on Hackerspace outreach is spooking the local community into calling the FAA and even the Air Force. It wasn’t exactly the plan at Quelab, but after an experimental solar tetroon got away from [Gonner Menning], one of the space’s members, that’s exactly what happened.

This is the first we remember hearing of solar tetroons. A tetroon is actually a fairly common weather balloon design using four triangle-shaped pieces. The solar part is pretty neat, it’s a balloon that uses the sun to heat air inside of a balloon. Instead of filling the bladder with a lighter-than-air gas it is filled with regular air and the sun’s rays heat it to become lighter than the surrounding ambient air.

For this particular flight the balloon was never supposed to be off the tether. Previous iterations had turned out to be rather poor fliers. Of course it figures that when [Gonner] finally tuned the design with an optimal weight to lift ratio it slipped its leash and got away. The GPS package tracked it for quite a while but ended up dying and the craft was nary to be found.

We weren’t going to embed the local news coverage video, but at the end the talking heads end up rolling around the word “Hackerspace” in their mouths like it’s foreign food. Good for a giggle after the break.

Continue reading “Solar Tetroon Spooks Albuquerque”

Finding an Active TX Pin on Cheap GPS

Twenty Euros will score you a small, self-contained GPS keychain. Crack that case open and you can have a lot more. [j3tstream] explored the guts of the thing and found that the NMEA data can be streamed out of the TX pin on the GPS chip.

First off, check out that miniscule GPS antenna module, crazy! But we digress. For testing purposes the asynchronous UART of the GPS was probed, proving that the data can be acquired. From there [j3tstream] moved to an Arduino Pro Mini with an SD card for data logging. The uC is powered from the GPS board but this will quickly exhaust the stock battery so [j3tstream] swapped it out for one from an old cellphone.

That little dot-matix LCD that comes with the unit also caught our eye. If you can hack a headless interface for the GPS that could be repurposed for your next project. May we suggest a wearable gaming project for it?

World’s First Smart Snowboard Changes Music According To Your Actions

Ever wanted a soundtrack to your life? For a couple of minutes at a time, Signal Snowboards creates that experience with a smart snowboard that varies your music depending on the tricks you perform on your way down the mountain.

The sign on the door says “School For Gifted Hackers”. Inside [Matt Davis] helped interface audio with an accelerometer – something he regularly does with all manner of hacked devices. At first the prototype was an iPhone mimicking the motions of a snowboarder the way fighter pilots describe dogfights with their hands. The audio engine that pulls those mostions to sound is open source and anyone is welcome to do their own tuning.

Once the audio was figured out the boys took it back to their shop and embedded the sensors into a new snowboard. The board is equipped with GPS, an accelerometer, a few rows of LEDs and a bluetooth board to connect to the phone app. It’s all powered by an on-board LiPo battery and a barrel jack out the side to charge it. Channels were cut by hand with a router then electronics sealed in place with epoxy. Not wanting to “just strap some Christmas lights onto a snowboard” the lighting is also connected to the sensors and is programmable.

See the video below of them making the board and taking it out for a test run on Bear Mountain.

Continue reading “World’s First Smart Snowboard Changes Music According To Your Actions”

A Simple Runner’s GPS Logger

[Daniel] received a grant from the University of Minnesota’s ECE Envision Fund and was thus responsible for creating something. He built a runner’s GPS logger, complete with a screen that will show a runner the current distance travelled, the time taken to travel that distance, and nothing else. No start/stop, no pause, nothing. Think of it as a stripped-down GPS logger, a perfect example of a minimum viable product, and a great introduction to getting maps onto a screen with an ARM micro.

The build consists of an LPC1178 ARM Cortex M3 microcontroller, a display, GPS unit, and a battery with not much else stuffed into the CNC milled case. The maps come from OpenStreetMap and are stored on a microSD card. Most of the files are available on GitHub, and the files for the case design will be uploaded shortly.

The CNC machine [Daniel] used to create the enclosure is a work of art unto itself. We featured it last year, and it’s good enough to do PCBs with 10 mil traces. Excellent work, although with that ability, we’re wondering why the PCB for the Runner’s GPS is OSH Park purple.

Hackaday Links: November 23, 2014

The 2015 Midwest RepRap Festival, a.k.a. the MRRF (pronounced murf) was just announced a few hours ago. It will be held in beautiful Goshen, Indiana. Yes, that’s in the middle of nowhere and you’ll learn to dodge Amish buggies when driving around Goshen, but surprisingly there were 1000 people when we attended last year. We’ll be there again.

A few activists in St. Petersburg flushed GPS trackers down the toilet. These trackers were equipped with radios that would send out their position, and surprise, surprise, they ended up in the ocean.

[Stacy] has been tinkering around with Unity2D and decided to make a DDR-style game. She needed a DDR mat, and force sensitive resistors are expensive. What did she end up using? Velostat, conductive thread, and alligator clips.

You know the Espruino, the little microcontroller board that’s basically JavaScript on a USB stick? Yeah, that’s cool. Now you can do remote access through a telnet server letting you write and debug code over the net.

The Open Source RC is a beautiful RC transmitter with buttons and switches everywhere, a real display, and force feedback sticks. It was a Hackaday Prize entry, and has had a few crowdfunding campaigns. Now its hit Indiegogo again.

Speaking of crowdfunding campaigns, The Mooltipass, the designed-on-Hackaday offline password keeper, only has a little less than two weeks until its crowdfunding campaign ends. [Mathieu] and the rest of the team are about two-thirds there, with a little more than half of the campaign already over.

RasPiCommPlus, An Expansion Board For Expansion Boards

The easiest way to connect a GSM module to a Raspberry Pi would be to buy a breakout module, install some software, and connect to a mobile network with a Pi. Need GPS, too? That’s a whole other module, with different software. The guys behind RasPiCommPlus are working on a better solution – a breakout board for breakout boards that takes care of plugging a ton of modules into a Pi and sorts out the kernel drivers to make interfacing with these modules easy.

Right now, the team has a GPS and GSM module, digital in and out modules, an analog input module, and RS-232 and -485 modules. They’re working on some cool additions to the lineup, including a breakout for Sharp memory displays, a 9-axis IMU, a stepper motor driver, and a 1-wire breakout module.

Some of the RasPiCommPlus team showed up to the Hackaday Munich party and were kind enough to sit down for a demo video. You can check that out below.

Continue reading “RasPiCommPlus, An Expansion Board For Expansion Boards”