FAA GPS data formatted for your use

faa-gps-data-formatted-with-vb

[Michael] posted up-to-date GPS data sets in the GPX format.  These data sets are an alternative to paid updates. Since GPX is a published standard which uses an XML style formatting for location data [Michael's] time was spent getting the original sets and finding a way to translate them for his Garmin EXTREX GPS.

The original data comes from — hang on, this is a mouthful — the US Federal Aviation Administration’s Facility Aeronautical Data Distribution System (FADDS). He had to apply for permission to download it and to use it in producing a custom GPS build. He grabbed the Airport waypoints and navaid sets, then studied accompanying files detailing the data structure before writing his own Visual Basic 2010 program to spit out the GPX files. He says he wanted to make them available in the spirit of the Open Hardware/Software movement. This may be most interesting for pilots (the kind that put Nooks on the dashboard, not the kind who watch the aircraft from the ground), but we’re sure there’s a myriad of uses for non-pilots alike.

Roll your own LoJack clone

diy-lojack

If you’ve ever worried about your car getting stolen this hack can help give you some piece of mind. It’s a cellular enabled geolocation device. These things have been in use for some time, the most common brand we know of is the LoJack. That company gives you a little box to install on the vehicle and if it ever goes missing they can grab the coordinates and forward them to the authorities. This custom version builds a lot into an addon board for an EFM32 board.

The image above shows the main components of the add-on: the GPS module and the GSM modem. Along the top edge of the board is the voltage regulator circuits which aim to keep the standby power to the slightest of trickles so as not to drain the car’s battery. What you can’t see is the SIM card slot which is located on the underside.

You can find the Eagle files for the design at the link above. We’ve embedded the video description of the project after the break.

[Read more...]

The Universal Geospatial Light Switch

project rita

Home automation has existed in one form or another for quite some time, but we thought this take on controlling lights was quite interesting.  Instead of having a menu of lights that you can turn on and off, this Android app lets you point your phone at the device and turn it on or of. Undoubtedly similar to how [Darth Vader] controls his lights at home.

Although the really technical details of this project aren’t listed, this setup reads the compass and GPS output of the Android device to figure out where it’s pointed in space. Combined with a script that understands the layout of the room, and an [X10] automation controller, it’s able to control lights accurately.

Be sure to check out the video of this device in action, or check out [Mike]‘s [Project Rita] blog to see the other interesting projects that he’s working on!

[Read more...]

Hackaday Links: January 17th, 2013

Free-formed VFD clock

links-free-formed-vfd-clock [James] doesn’t need a circuit board or even some protoboard to get the job done. He free-formed all the circuits for his VFD clock. Right now this is the only project hosted on his blog so click around to see how he got to this point.

DIY LED traffic light

links-diy-traffic-light

Here’s a scratch-build traffic light which [Jarle] uses to display information about his server. If you’re unable to find your own storm damaged original this is a pretty easy way to build one.

FPGA space attack game

links-classic-shooter-running-on-fpga

This game is running on an FPGA, but it’s not written in HDL. Instead, [Johan] wrote the game in C to run on a soft processor loaded on the gate array.

Hourglass entropy

links-hour-glass-entropy

This is a fascinating idea for generating random numbers. [Gijs] is shining a laser onto a light dependent transistor. The beam of the laser is broken by the falling sand of an hourglass. This technique could be use as an entropy source for random number generation.

GPS clock source for a digital timepiece

links-gps-clock

It seems like massive overkill, but you can’t beat the time accuracy of using a GPS module as a clock source. We don’t expect that [Jay] kept the clock in one piece after finishing the project. It’s just a good way to practice decoding the GPS data.

Brute forcing a GPS PIN

pin

[JJ] picked up a Garmin Nuvi 780 GPS from an auction recently. One of the more frustrating features [JJ] ran into is it’s PIN code; this GPS can’t be unlocked unless a four-digit code is entered, or it’s taken to a ‘safe location’. Not wanting to let his auction windfall go to waste, [JJ] rigged up an automated brute force cracking robot to unlock this GPS.

The robot is built around an old HP scanner and a DVD drive sled to move the GPS in the X and Y axes. A clever little device made out of an eraser tip and a servo taps out every code from 0000 to 9999 and waits a bit to see if the device unlocks. It takes around 8 seconds for [JJ]‘s robot to enter a single code, so entering all 10,000 PINs will take about a day and a half.

Fortunately, the people who enter these codes don’t care too much about the security of their GPS devices. The code used to unlock [JJ]‘s GPS was 0248. It only took a couple of hours for the robot to enter the right code; we’d call that time well spent.

You can check out the brute force robot in action after the break.

[Read more...]

Spare parts pulled together into a Nixie clock

We’d like to dig around in [Small Scale Research's] parts bin. Apparently there’s good stuff in there because he managed to build this Nixie tube clock using mostly leftovers.

The chip driving the device is an ATtiny1634. We weren’t familiar with it so here’s a datasheet (pdf) if you’re curios as well. The microcontroller communicates with an old GPS module in order to keep perfect time. There is an external antenna for it which connects through the hole next to the red switch seen above. The high voltage driver is a repurposed backlight inverter which is fed 12V power from an old laptop supply.

The album linked above shows the build quite well and even includes full schematics. There are some fireworks when he encountered an issue with a pretty large cap shorting to a resistor leg. If this isn’t enough juicy detail for you there are a few more nuggets shared in the Reddit comments.

Arduino data logger maps out the potholes on your morning commute

Now you can prove that you have the bumpiest commute in the office by measuring how rough your ride actually is. [Techbitar] calls the project the Bump-O-Meter. It uses an Arduino, GPS, and accelerometer to map out rough roads.

The hardware was built on a breadboard and [Techbitar] goes into detail about connecting and communicating with each module used. Once it’s running, the logger will read up to six sensors and record them to an SD card. In the video after the break he shows the method used to dump and graph the data. He starts by looking at the data in a spreadsheet. There are many fields included in the file but only three of them are needed to graph what is seen above. After narrowing down the number of columns he heads over to GPS Visualizer and uploads the data set which is then automatically plotted on the map.

In a Utopian society all city owned vehicles would have a system like this and the bad sections of road would automatically appear on the road crew’s repair list.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 92,123 other followers