An Arduino power inverter

inverter

If you’ve got a few solar panels lying around, or even if you want some 120/230 V AC power from a few 12 Volt batteries, you’ll need a power inverter. Sure, you can drop on down to any big box store and pick one of these up, or you can be like [Michael] and build your own (Danish, translation).

[Michael] found himself in the possession of a few halogen light transformers and decided to make use of them by building a DC to AC power inverter. The inverter is fairly simple – just the transformer, a few MOSFETS, and an ATMega0168 for software control that includes a ‘soft start’ feature that prevents power surges on startup.

The circuit is simple enough to etch at home, although a soldermask and a nice insulated enclosure would probably be ideal for this application.

Laptop backlight converted from CCFL to LED

ccfl-to-led-backlight-conversion

[Lee Davison] acquired an Acer laptop that didn’t have a display anymore. He had enough parts on hand to add in an LCD panel and give it a CCFL backlight. But when he started looking for an inverter to drive the backlight he couldn’t find one. What he did have on hand were some smashed screens that had LED backlights and so the CCFL to LED backlight conversion project was born.

He tore into the LED display and found the driver board. Unfortunately he didn’t locate the datasheet for the exact LED driver, but he found one that was similar and was able to trace out the support circuitry on the PCB. This let him cut away the unneeded parts of the board without damaging the driver. He didn’t want to pull out the CCFL tubes until he was sure the LED conversion would work so he tried it out on another smashed panel (where does he come up with all these parts) and it worked great. Once he got everything in place he was very happy with the results. The only drawback to the system is that he doesn’t have the ability to dim the backlight.

Headphone light show

Seriously, nothing says ‘Look at me!’ like these headphones. [Yardley Dobon] added a rainbow of colored electroluminescent wire to his headphones and made them pulse to the music. The video after the break shows the headphones bumping to the tunes. This is one of two versions of the project, the other runs the EL wire along the headphone wire itself. We’re a bit surprised that the high frequency from that parallel run doesn’t inject noise into the signal. We do enjoy seeing these in action, but in practice observers unfortunately won’t be able to hear the tunes to which the lights are pulsing.

It took us a little while to figure out that [Yardley] didn’t roll his own VU hardware. The inverter driving the EL wire is designed to bump to the music. But he did hack it to use an audio line rather than a microphone. He mentions that this has other uses, like allowing carefully crafted sound clips to precisely control the inverter.

[Read more...]

Driving your home appliances with hybrid power

This system of hybridizing your home’s electric appliances is an interesting take on solar energy. It focuses on seamlessly switching appliances from the grid to stored solar energy as frequently as possible. There’s a promo video after the break that explains the setup, but here’s the gist of it.

Follow along on the pictograph above. We start on the left with solar panel. This feeds to a charger that tops off a 12V battery. When that battery is full, the charger feeds to the inverter which converts the 12V DC to 110V AC power. This is fed to a pass-through which is in between the appliance (in this a case a lamp) and the wall outlet. The pass-through will switch between mains power coming from the outlet, and the 110 coming from the inverter. The homeowner won’t know, or care, which power source is being used. But sunny months should result in lower energy bills. The real question is how long it takes to cover the cost of the system in saved electricity.

[Read more...]

Pedal-powered 32-core ARM Linux server

Sure, it’s probably a gimmick to [Jon Masters], but we absolutely love the pedal-powered server he built using a group of ARM chips. [Jon] is an engineer at Red Hat and put together  the project in order to show off the potential of the low-power ARM offerings.

The platform is a quad-core Calxeda EnergyCore ARM SoC. Each chip draws only 5 Watts at full load, with eight chips weighing in at just 40 Watts. The circuit to power the server started as a solar charger, which was easy to convert just by transitioning from panels to a generator that works just like a bicycle trainer (the rear wheel presses against a spin wheel which drives the generator shaft).

So, the bicycle generator powers the solar charger, which is connected to an inverter that feeds a UPS. After reading the article and watching the video after the break we’re a bit confused on the actual setup. We would think that the inverter would feed the charger but that doesn’t seem to be the case here. If you can provide some clarity on how the system is connected please feel free to do so in the comments.

[Read more...]

Arduino rover evolves to a trike design

[Eduard Ros] wrote in to show off the latest version of his Arduino powered autonomous rover (translated). You may remember seeing the first version of the build back in June. It started with a remote control truck body, adding an Arduino and some ultrasonic sensors for obstacle avoidance.

The two big wheels and the pair of sensors look familiar, but most of the other components are a different from that version. The biggest change is the transition from four wheels to just three. This let him drop the servo motor which controlled steering. At first glance we though this thing was going to pop some mad wheelies, but the direction of travel actually drags the third wheel being the larger two. The motors themselves are different, this time depending on gear-reduced DC motors. The motor H-bridge is the same, but [Eduard] used a simple transistor-based inverter to reduce the number of pins needed to activate it from two down to just one. He also moved from an Arduino Uno to a Nano to reduce the footprint of the controller.

Roll your own battery backup system

[Chris] and [Dom] wanted to build their own battery backup system on the cheap. They were very creative in sourcing the parts, and ended up putting together a battery-backed CCTV system for about eighty bucks.

Since short power outages are fairly common in the area this battery backup makes sense. We’ve seen some pretty gnarly whole-house systems but this is more of a novelty. That’s a good thing, because the hacking duo decided to reuse batteries which were headed for the scrap yard. They’re connected to a trickle charger which makes sure that they’re continually topped off when mains power is energized. But when there’s a blackout a relay switches an outlet box over to the inverter (also a used part).

The system is outlined in the entertaining video after the break. You’ll see they guys show off the completed build, followed by a walk through of the circuit they designed and how it functions.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,357 other followers