A Machine Shop In A Toolbox: Just Add Time

You don’t need any fancy tools. A CNC machine is nice. A 3D printer can help. Laser cutters are just great. However, when it comes to actually making something, none of this is exactly necessary. With a basic set of hand tools and a few simple power tools, most of which can be picked up for a pittance, many things of surprising complexity, precision, and quality can be made.

Not as pretty, but worked just the same.
Not as pretty, but worked just the same.

A while back I was working on a ring light for my 3D printer. I already had a collection of LEDs, as all hackers are weak for a five-dollar assortment box. So I got on my CAD software of choice and modeled out a ring that I was going to laser cut out of plywood. It would have holes for each of the LEDs. To get a file ready for laser cutting ook around ten minutes. I started to get ready to leave the house and do the ten minute drive to the hackerspace, the ten minutes firing up and using the laser cutter (assuming it wasn’t occupied) and the drive back. It suddenly occurred to me that I was being very silly. I pulled out a sheet of plywood. Drew three circles on it with a compass and subdivided the circle. Under ten minutes of work with basic layout tools, a power drill, and a coping saw and I had the part. This was versus the 40 minutes it would have taken me to fire up the laser cutter.

Continue reading “A Machine Shop In A Toolbox: Just Add Time”

Send A Raspberry Pi Back In Time To 1980

One of our favorite hacker-scavengers on YouTube, [The Post-Apocalyptic Inventor], has been connecting his Raspberry Pi up to nearly every display that he’s got in his well-stocked junk pile. (Video embedded below.)

Modern monitors with an HDMI input connect right up to the Pi. Before HDMI came VGA, but the Pi doesn’t do that natively. One solution is to use a composite-to-VGA converter and pull the composite signal out of the audio jack. Lacking the right 4-pole audio cable, [TPAI] soldered some RCA plugs directly onto the Pi, and plugged that into the converter. On a yet-older monitor, he faced a SCART adapter. If you’re European, you’ll know these — it’s just composite video with a different connector. Good thing he had a composite video signal already on hand.

online-with-my-1980-tv-set-huc2ls56hwimkv-shot0004The pièce de resistance, though, was attaching the Pi to his 1980 Vega TV set. It only had an antenna-in connector, so he needed an RF modulator. With a (presumably) infinite supply of junk VCRs on hand, he pulled an upconverter out of the pile, and got the Pi working with the snazzy retro TV.

Continue reading “Send A Raspberry Pi Back In Time To 1980”

3D Print An Enigma Machine That’s Close To The Real Thing

The Enigma machine as used by the German military during World War Two exerts a curious fascination among our community of hardware hackers and makers. Perhaps it is the mechanical complexity of the machine itself, or maybe the tale of how its encoded messages were decrypted by Allied codebreakers that contributes to this interest, but whatever it is we’ve seen a succession of Enigma-related projects over the years that shows no sign of abating.

The latest Enigma project to come our way is a particularly nice one from a group of first year students at CentraleSupélec Rennes, in Northwestern France. Their Réplique Enigma is a fully mechanical Enigma replica using 3D printing techniques, and unlike so many replicas which use modern electronics it has a set of rotors just like those you would have found in the original. The rotors themselves have a 3D-printed plastic shell which houses brass contacts and the associated writing, while the keyboard and lamp board are both made from plywood. Rather than trying to replicate the original switches from the keyboard they are using modern microswitches, however the keys themselves are upright posts that resemble the original. An AZERTY layout may not have been present on the real Enigma machines, but lends a pleasing twist to the build.

It’s worth browsing all the pages for this build, as the front page does not necessarily capture the whole build. The rotors set this Enigma apart from many of the replicas we’ve featured in the past, so you may find it interesting to take a look and make a few comparisons.

Hackaday Prize Entry: Antigravity Arm Floaties

A few years ago, [Mike] heard about orthotic devices for people in wheelchairs that make it easier to them to move their arms. His daughter had the opportunity to demo one of these devices, and the results with the device were good. The fights with the insurance company were not so good, but this really was a device that could be made on a 3D printer with a few rubber bands, after all. Thus, [Mike] invented 3D printed antigravity arm floaties.

The name basically tells the story — these antigravity arm floaties work well to counter the pull of gravity for individuals with low muscle tone. [Mike]’s daughter found the professional, official, not-covered-by-insurance version useful, so [Mike] decided to build his own. There’s really not much to it – it’s just a few 3D printed parts attached to a wheelchair with a few rubber bands giving the mechanical linkages some resistance.

In the true hacker spirit, [Mike] took the basic idea of these spring-loaded arm floaties and put a new twist on it. He’s using a chain as the mechanism that allows freedom of movement in the XY plane. This makes the device slightly better, and is by every account an improvement on the commercial version. That’s what you get when you can iterate quickly with a 3D printer, making this project an excellent example of what we’re looking for in the Assistive Technology portion of the Hackaday Prize.

A Slice Of Ubuntu

The de facto standard for Raspberry Pi operating systems is Raspbian–a Debian based distribution specifically for the diminutive computer. Of course, you have multiple choices and there might not be one best choice for every situation. It did catch our eye, however, that the RaspEX project released a workable Ubunutu 16.10 release for the Raspberry Pi 2 and 3.

RaspEX is a full Linux Desktop system with LXDE (a lightweight desktop environment) and many other useful programs. Firefox, Samba, and VNC4Server are present. You can use the Ubuntu repositories to install anything else you want. The system uses kernel 4.4.21. You can see a review of a much older version of RaspEX  in the video below.

Continue reading “A Slice Of Ubuntu”

Hajime, Yet Another IoT Botnet

Following on the heels of Mirai, a family of malware exploiting Internet of Things devices, [Sam Edwards] and [Ioannis Profetis] of Rapidity Networks have discovered a malicious Internet worm dubbed Hajime which targets Internet of Things devices.

Around the beginning of October, news of an IoT botnet came forward, turning IP webcams around the world into a DDoS machine. Rapidity Networks took an interest in this worm, and set out a few honeypots in the hopes of discovering what makes it tick.

Looking closely at the data, there was evidence of a second botnet that was significantly more sophisticated. Right now, they’re calling this worm Hajime.

Continue reading “Hajime, Yet Another IoT Botnet”

Wooden Puzzle Book Will Twist And Dazzle Your Brain

In what might be one of the coolest applications of laser cutting, joinery, puzzles, writing, and bookbinding, [Brady Whitney] has created the Codex Silenda — a literal puzzle book of magnificent proportions.

[Whitney] had originally conceived the idea of the Codex for his senior thesis research project at Iowa State University, and the result is something for almost everyone. On each of the Codex’s five pages lies a mechanical puzzle that must be solved to progress to the next, while an accompanying text weaves a story as you do so. These intricate pages were designed in SolidWorks and painstakingly assembled from laser cut wood. Breaking the fourth wall of storytelling by engaging the reader directly in uncovering the book’s mysteries is a unique feat, and it looks gorgeous to boot.

Continue reading “Wooden Puzzle Book Will Twist And Dazzle Your Brain”