Simple 3D-Printed Circuitry

One of the problems encountered thus far with 3D-printing circuits with conductive filament is that it doesn’t really bond to anything, let alone solder, so how does one use it?

[mikey77] wrote an Instructable showing how to print circuit boards and create simple circuits, using shape of the plastic as a way to control the circuit. We like how he used using the flexible nature of the filament to make buttons, with two layers of conductive material coming together with the press of a finger.

He also created a linear potentiometer with a 3D-printed wiper that increases the ohms of the connection the farther it’s pushed. The filament doesn’t have the same conductivity as copper so [mikey] was able make resistors by stringing pieces of conductive plastic between two leads. There are also some hexagonal touch pads that turned out very nice.

We’ve published a lot of posts about DIY circuitry, including a previous effort of [mikey]’s, 3D-printed solderless circuits, plus another post about printing point-to-point circuits on a 3D printer.

Continue reading “Simple 3D-Printed Circuitry”

OpenCV Turret Tracks Motion, Busts Airsoft Pellets

In the eternal struggle for office dominance, the motion-tracking Airsoft/Nerf/whatever, the autonomous turret seems to be the nuclear option. [Aaron] and [Davis] built a motion-tracking turret that uses openCV to detect movement, before hitting a relay to trigger the gun.

There’s a Raspberry Pi controlling a Logitech C210 Pi-compatible webcam, with a stepper hat for the Pi controlling two NEMA steppers that aim the gun. The design is simple but elegant, with a rotating base and an assembly that raises and lowers the weapon.

The openCV intrigues us. We want to see a openCV-powered turret with color detection, so your own team doesn’t get blasted along with your hapless enemies. Or if guarding your cubicle, how about a little openCV facial recognition?

If you want to take a stab at your own, [Aaron] and [Davis] show how they built their project in their Hackaday.io page and their Python script can be found on GitHub.  Otherwise, check out the Counter Strike Airsoft robot, the Airsoft sentry gun, and the Nerf turret powered by Slack we published previously. Continue reading “OpenCV Turret Tracks Motion, Busts Airsoft Pellets”

Optogenetics For 100 Euros

Larval zebrafish, Drosophila (fruit fly), and Caenorhabditis elegans (roundworm) have become key model organisms in modern neuroscience due to their low maintenance costs and easy sharing of genetic strains across labs. However, the purchase of a commercial solution for experiments using these organisms can be quite costly. Enter FlyPi: a low-cost and modular open-source alternative to commercially available options for optogenetic experimentation.

One of the things that larval zebrafish, fruit flies, and roundworms have in common is that scientists can monitor them individually or in groups in a behavioural arena while controlling the activity of select neurons using optogenetic (light-based) or thermogenetic (heat-based) tools.

FlyPi is based on a 3D-printed mainframe, a Raspberry Pi computer, and a high-definition camera system supplemented by Arduino-based optical and thermal control circuits. FlyPi features optional modules for LED-based fluorescence microscopy and optogenetic stimulation as well as a Peltier-based temperature simulator for thermogenetics. The complete version with all modules costs approximately €200 with a layman’s purchasing habits, but for those of us who live on the dark side of eBay or the depths of Taobao, it shouldn’t cost more than €100.

Once assembled, all of the functions of FlyPi can be controlled through a graphical user interface. As an example for how FlyPi can be used, the authors of the paper document its use in a series of “state-of-the-art neurogenetics experiments”, so go check out the recently published open access paper on PLOS. Everything considered the authors hope that the low cost and modular nature, as well as the fully open design of FlyPi, will make it a widely used tool in a range of applications, from the classroom all the way to research labs. Need more lab equipment hacks? Don’t worry, we’ve got you covered. And while you’re at it, why not take a spin with the RWXBioFuge.

DIY Wind Turbine For Free Energy

With electricity cost going up and the likes of British Gas hiking up their price, everyone could use a bit of free energy. There are a number of ways to harvest renewable energy including solar and wind, however, the cost of setting up a wind farm can be quite high. [Mr Tickles] has uploaded a video where he has a cheaper DIY method of making a DIY wind turbine.

His project uses a commercial ceiling fan as a turbine for converting the wind energy into electricity. PVC pipes are used to mount the entire thing such that it becomes portable. A cardboard fin is used to make the propeller face the wind but there are plans to upgrade it in the future. [Mr Tickles] demonstrates his project by lighting up a lamp and then charging a cell phone.

For the price, this hack is pretty neat and can be extended to work with larger fans. For those who are looking at an even simpler version of this build, check out the most straightforward wind turbine.

Continue reading “DIY Wind Turbine For Free Energy”

Under The Hood Of AMD’s Threadripper

Although AMD has been losing market share to Intel over the past decade, they’ve recently started to pick up steam again in the great battle for desktop processor superiority. A large part of this surge comes in the high-end, multi-core processor arena, where it seems like AMD’s threadripper is clearly superior to Intel’s competition. Thanks to overclocking expert [der8auer] we can finally see what’s going on inside of this huge chunk of silicon.

The elephant in the room is the number of dies on this chip. It has a massive footprint to accommodate all four dies, each with eight cores. However, it seems as though two of the cores are deactivated due to a combination of manufacturing processes and thermal issues. This isn’t necessarily a bad thing, either, or a reason not to use this processor if you need to utilize a huge number of cores, though; it seems as though AMD found it could use existing manufacturing techniques to save on the cost of production, while still making a competitive product.

Additionally, a larger die size than required opens the door for potentially activating the two currently disabled chips in the future. This could be the thing that brings AMD back into competition with Intel, although both companies still maintain the horrible practice of crippling their chips’ security from the start.

The Amazon Echo As A Listening Device

It is an inevitability that following swiftly on the heels of the release of a new device there will be an announcement of its rooting, reverse engineering, or other revealing of its hackability. Now the device in question is the Amazon Echo, as MWR Labs announce their work in persuading an Echo to yield the live audio from the microphone and turn the voice assistant device into a covert listening device.

The work hinges on a previous discovery and reverse engineering (PDF) of Amazon’s debug connector on the base of the Echo, which exposes both an SD card interface and a serial terminal. Following that work, they were able to gain root access to the device, analyze the structure of the audio buffers and how the different Echo processes use them, and run Amazon’s own “shmbuf_tool” application to pipe raw audio data to a network stream. Astoundingly this could be done without compromising the normal operation of the device.

It should be stressed, that this is an exploit that requires physical access to the device and a bit of knowledge to perform. But it’s not inconceivable that it could be made into a near-automated process requiring only a device with a set of pogo pins to be mated with an Echo that has had its cover quickly removed.

That said, inevitably there will be enough unused Echos floating around before too long that their rootability will make them useful to people in our community. We look forward to what interesting projects people come up with using rooted Echos.

This isn’t the first time we’ve covered the use of an Echo as a listening device.

Via Hacker News.

Amazon Echo image: FASTILY [CC BY-SA 4.0].

Superconference Interview: SpriteTM

SpriteTM, or [Jeroen Domburg], has a bit of a following around these parts. He’s installed Linux on a hard drive the hard way. He can play Snake on his keyboard. He’s cared for several generations of Tamagotchis. In short, there are very few people who have both the technical ability and sense of humor to pull off what [Sprite] does.

At last year’s Supercon, we pulled Sprite aside to talk about his work and his latest hack, the tiniest Game Boy ever. He talked about his Supercon keynote, and how to hack the crypto challenge in last year’s Superconference badge in an hour without solving any of the puzzles. Now, we’re happy to present that interview today, available below.

While we very much doubt many people could — or would — take four conference badges and rick roll the entire Superconference for the badge hacking session, we’re still looking for eager and capable presenters. The Call for Proposals is now open for the 2017 Hackaday Superconference. If you have a story of hardware heroics, creativity in CPLDs, a passion for prototyping, or an ambition for technological art, we want you to share your story. Even if you don’t, that’s fine, too: tickets are still available for the Superconference in Pasadena, California on November 11th and 12th.