Hackaday Podcast 185: A 2022 Rotary Phone, How AI Imagines Zepplin, Are We Alone In The Universe

This week, Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi start off by talking about the chip shortage…but not how you think. With a list that supposedly breaks down all of the electronic components that the Russian military are desperate to get their hands on, we can see hackers aren’t the only ones scrounging for parts. If you thought getting components was tricky already, imagine if most of the world decided to put sanctions on you.

We’ll also talk about kid-friendly DIY stereoscopic displays, the return of the rotary cellphone, and using heat to seal up 3D printed parts for vacuum applications. Join us as we marvel over the use of rubbery swag wristbands as tank treads, and ponder an array of AI-created nightmares that are supposed to represent the Hackaday writing crew. Finally we’ll talk about two iconic legacies: that of the 3.5 inch floppy disk, and astrophysicist Frank Drake.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download, and burn it to your own CD!

Continue reading “Hackaday Podcast 185: A 2022 Rotary Phone, How AI Imagines Zepplin, Are We Alone In The Universe”

A Pill Dispenser For The Person With Everything

Sorting out pills is a mildly tedious task, and one that’s ripe for a bit of automation. It’s a task that [Mellow] has taken on enthusiastically, with the result of an extremely well-designed dispenser that has a stack of hoppers with servos controlled by an ESP8266 that dispense the pills required on time.

There are a series of videos of which we’ve put the latest below the break, showing the various iterations of this project. Earlier versions used multiple microcontrollers rather than the single ESP, and his sensor choice is both simple and ingenious. A single vibration sensor detects the pills falling upon it, resulting on an extremely compact electronics set-up and the base of the 3D printed stack.

We’re struck by this design, by its simplicity, ingenuity, and its pleasing aesthetics with the use of a piece of perfboard and a load of heatshrink to make an extremely tidy wiring loom. We’re not sure we’ll ever need a pill dispenser like it, but if we did we don’t think we could come up with a better design.

You might be surprised to find that pill dispensers have appeared here before.

Continue reading “A Pill Dispenser For The Person With Everything”

This Week In Security: 11,000 Gas Stations, TrustZone Hacks Kernel, And Unexpected Fuzzing Finds

Automated Tank Gauges (ATGs) are nifty bits of tech, sitting unseen in just about every gas station. They keep track of fuel levels, temperature, and other bits of information, and sometimes get tied into the automated systems at the station. The problem, is that a bunch of these devices are listening to port 10001 on the Internet, and some of them appear to be misconfigured. How many? Let’s start with the easier question, how many IPs have port 10001 open? Masscan is one of the best tools for this, and [RoseSecurity] found over 85,000 listening devices. An open port is just the start. How many of those respond to connections with the string In-Tank Inventory Reports? Shodan reports 11,113 IPs as of August of this year. [RoseSecurity] wrote a simple Python script that checked each of those listening IPs came up with a matching number of devices. The scary bit is that this check was done by sending a Get In-Tank Inventory Report command, and checking for a good response. It seems like that’s 11K systems, connected to the internet, with no authentication. What could possibly go wrong? Continue reading “This Week In Security: 11,000 Gas Stations, TrustZone Hacks Kernel, And Unexpected Fuzzing Finds”

A Pokemon Silver Cartridge Made Of Pure Silver

The big problem with Pokemon Silver is that it came in a cartridge made of only-slightly-sparkly grey plastic. [Modified] decided to fix all that, making an all-silver cartridge instead.

The cartridge was first modeled to match the original as closely as possible, and 3D printed for a fit check. From there, a test cartridge was machined out of a block of aluminium to verify everything was correct. It’s a wise step, given the build relies on a 1-kilogram bar of silver worth roughly $750.

With everything checked and double-checked, machining the silver could go ahead. Every scrap of silver that could be saved from the CNC machining was captured in a box so that it could be recycled. Approximately 28 grams of silver was lost during the process. WD40 was used as a coolant during the machining process, as without it, the silver didn’t machine cleanly. The final cart weighed 164 grams.

It’s not a particularly hard project for an experienced CNC operator, but it is an expensive one. Primary expenses are the cost of the silver bar and the Pokemon cart itself, which can be had for around $50 on the usual auction sites.

However, the “heft and shine” of the finished product is unarguably glorious. Imagine handing that over to a friend to plug into their Game Boy! Just don’t forget to ask for it back. If you’re rich enough to do the same thing with Pokemon Gold or Platinum, don’t hesitate to drop us a line. 

We love a good casemod, and this one reminds us of a brilliant crystal PlayStation 2 from years past.

Continue reading “A Pokemon Silver Cartridge Made Of Pure Silver”

Glue-on nails with vinyl record pickups pierced through them that are used on a vinyl record

The Sound Of Nails On Black Vinyl Records

[Victoria Shen] modifies glue-on nails to give her the ability to play vinyl records with her fingers. Details are light but from the many glamour pictures, it looks like she pushes record player needles through glue-on nails with thin pickup wire that then presumably goes to an audio jack for amplification.

Photograph of hand with record needs through glue-on nails

[Victoria] experiments with novel musical tools for use in her art and performances. Be sure to check out the videos of the nails in action. The combination of “scratching” and ability to alter the speed of vinyl with the free fingers creates a weird and eerie experience.

Using her “Needle Nails”, [Victoria] has found she’s able to play multiple records simultaneously (Nitter). Thanks to the different diameters of 33, 78 and 45 vinyls, she’s able to stack them up while still keeping her fingers on them.

Glove like musical instruments are nothing new but the novel use of fashion, glamour and technology allow [Victoria Shen] the freedom to create something uniquely weird and cool, so much so that Beyonce used it in a video shoot for Vogue (Nitter).

Continue reading “The Sound Of Nails On Black Vinyl Records”

A RPI HAT For Synchronized Measurements

A team from the Institute for Automation of Complex Power System (ACS) at RWTH Aachen University have been working for a while on the analysis of widely distributed power systems. In a drive to move away from highly specialised (and expensive) electronics platforms, they have produced some instrumentation designed to operate with the Raspberry Pi platform, and an open source software stack. They call the platform the SMU (Synchronised Measurement Unit.) The SMU consists of a HAT sitting on an RPi3, inside a 3D printed box that is intended to attach to a DIN rail. After all, this is supposed to be an industrial platform.

Hardware wise, the star of the show is the Texas Instruments ADS8588S which is a 16-bit 8-channel simultaneous sampling ADC. This is quite a nice device, with 200 kSPS throughput and a per-channel programmable front end, packaged in a hacker-friendly 64-pin QFP. What makes this project interesting however, is how they solved the problem of controlling the sampled data acquisition and synchronisation.

1-PPS and BUSY edges converted to levels, then OR’d to trigger the DMA

By programming the ADC into byte-parallel mode, then using the BCM2837 Secondary Memory Interface (SMI) block together with the DMA, samples are transferred into memory with minimal CPU overhead. An onboard U-Blox Max-M8 GNSS module provides a 1PPS (top of second pulse) signal, which is combined with the ADC busy signal in a very simple manner, enabling both sample rate control as well as synchronisation between multiple units spread out in an installation. They reckon they can get synchronisation to within 180 ns of top-of-second, which for measuring relatively slow-changing power systems, should be enough. The HAT PCB was created in KiCAD and can be found in the SMU GitHub hardware section, making it easy to modify to your needs, or at least adjust the design to match the parts you can actually get your hands on.

Continue reading “A RPI HAT For Synchronized Measurements”

Making Variable Capacitors By Stretching Aluminium Cans

Sometimes when you need a component, the best way to get it is by building it yourself. [North Carolina Prepper] did just that, creating his own trombone-style variable capacitor by stretching some aluminium beverage cans. 

The requirement was for a 26 pF to 472 pF capactitor, for a radio transmitting from 7 MHz to 30MHz. The concept was to use two beverage cans, one sliding inside the other, as a capacitor, with an insulating material in between.

To achieve this, a cheap exhaust-pipe expanding tool was used to stretch a regular can to the point where it would readily slide over an unmodified can, plus some additional gap to allow for a plastic insulating sheet in between. Annealing the can is important to stop it tearing up, but fundamentally, it’s a straightforward process.

The resulting trombone capacitor can readily be slid in and out to change its capacitance. The build as seen here achieved 33 pF to 690 pF without too much hassle, not far off the specs [North Carolina Prepper] was shooting for.

Radio hams are very creative at building their own equipment, especially when it comes to variable capacitors. Video after the break.

Continue reading “Making Variable Capacitors By Stretching Aluminium Cans”