CNC Calculator Does What You Can’t

The Hackaday community — and the greater hacker community — can do absolutely anything. Readers of Hackaday regularly pilot spaceships. The transmutation of the elements is a simple science project here, one easily attainable by a high school student. Hackaday readers have solved international crises, climbed Everest, and one day we’re going to have readers accessing Hackaday from an IP address on Mars. There is almost no limit to what our community can do.

This project does the one thing Hackaday readers are utterly incapable of doing. As a cool little bonus, the enclosure for this device is a beautiful work of milled aluminum, anodized in a deep, beautiful black and engraved with exacting precision.

The guts of this build are in essence an Arduino loaded up with some special code that does what no human is capable of doing. Added onto that is a small lithium battery, charging circuit, character display, and a small keypad. There’s really nothing here that can’t be sourced from your favorite AliDXExtremeDeal shop.

The real show here is the beautiful milled aluminum enclosure. This was designed in Fusion360 and milled away on a Tormach CNC loaded up with a slightly worn endmill. The engraving was done with a Lakeshore carbide engraver. The first prototype was finished with a powder coat because that’s the easiest way for someone in a home shop to put a great finish on a milled enclosure. The production versions of this amazing device (available here, although it’s sold out at the time of this writing) are anodized and look fantastic.

If this is the sort of project that appeals to your desire for logic with just a touch of anti-Americanism, be sure to check out the number one most commented post on Hackaday ever. There are a lot of great opinions in the comments section there, even if the topic being discussed is obtuse and weird to the entire Hackaday community.

Continue reading “CNC Calculator Does What You Can’t”

CNC Milling is More Manual Than You Think

I was in Pasadena CA for the Hackaday Superconference, and got to spend some quality time at the Supplyframe Design Lab. Resident Engineer Dan Hienzsch said I could have a few hours, and asked me what I wanted to make. The constraints were that it had to be small enough to fit into checked luggage, but had to be cool enough to warrant taking up Dan’s time, with bonus points for me learning some new skills. I have a decent wood shop at home, and while my 3D printer farm isn’t as pro as the Design Lab’s, I know the ropes. This left one obvious choice: something Jolly Wrencher on the industrial Tormach three-axis CNC metal mill.

A CNC mill is an awesome tool, but it’s not an omniscient metal-eating robot that you can just hand a design file to. If you thought that having a CNC mill would turn you into a no-experience-needed metal-cutting monster, you’d be sorely mistaken.

Of course the machine is able to cut arbitrary shapes with a precision that would be extremely demanding if done by hand, but the craft of the operator is no less a factor than with a manual mill in making sure that things don’t go sideways. Dan’s good judgment, experience, and input was needed every step of the way. Honestly, I was surprised by how similar the whole procedure was to manual milling. So if you want to know what it’s like to sit on the shoulder of a serious CNC mill operator, read on!

Continue reading “CNC Milling is More Manual Than You Think”

Hackaday Prize Entry: CNC Mill Lets Kids Engrave on the Fly

The manufacturing revolution has already begun, and there are 3D printers, CNC machines, and laser cutters popping up in garages and workspaces all around the world. The trouble with these machines is that they’re fiddly to use, and you don’t want a kid playing around with them.

[moritz.messerschmidt]’s Hackaday Prize entry is a desktop Badgemaker that engraves acrylic name badges for kids. Under the hood, an Arduino with a custom-built shield with 3 SilentStepStick stepper drivers on it operates the three NEMA-11 motors. Meanwhile, the kids interact with a 7” touchscreen powered by a Raspberry Pi.

Once the kid selects what to engrave, motors move the piece of acrylic against a rotary tool’s milling bit, carving the acrylic as instructed. These cards are then equipped with watch batteries and LEDs to light up.

The touch screen is key. Bummed out by basic CNC machines that were difficult to use — like hobbyist 3D printers with a newbie-befuddling interface — [moritz.messerschmidt] went out of his way to make the interface kid-friendly, with just a simple set of choices necessary for creating one’s own name badge.

Is this a feature-packed CNC machine with all the bells and whistles? No, but that’s not the point. The purpose of the Badgemaker is to introduce a new generation to personal fabrication technology. It’s a toy, but that’s the point: a CNC machine that’s so easy to use, even a child can do it.

CNC Robot Makes a Move

Another day, another Kickstarter. While we aren’t often keen on touting products, we are keen on seeing robotics and unusual mechanisms put to use. The Goliath CNC has long since surpassed its $90,000 goal in an effort to put routing robots in workshops everywhere.

Due to their cost and complexity, you often only find omni-wheels on robots scurrying around universities or the benches of robotics hobbyists, but the Goliath makes use of nine wheels configured as three sets in a triangular pattern. This is important as any CNC needs to make compound paths, and for wheeled robots an omni-wheel base is often the best bet for compound 2D translation.

coordinate drawingWhat really caught our eye is the Goliath’s unique positioning system. While most CNC machines have the luxury of end-stops or servomotors capable of precise positional control, the Goliath has two “base sensors” that are tethered to the top of the machine and mounted to the edge of the workpiece. Each sensor connects to the host computer via USB and uses vaguely termed “Radio Frequency technology” that provides a 100Hz update for the machine’s coordinate system. This setup is sure to beat out dead-reckoning for positional awareness, but details are scant on how it precisely operates. We’d love to know more if you’ve used a similar setup for local positioning as this is still a daunting task for indoor robots.

A re-skinned DeWalt 611 router makes for the core of the robot, which is a common option for many a desktop milling machine and other bizarre, mobile CNCs like the Shaper Origin. While we’re certain that traditional computer controlled routers and proper machining centers are here to stay, we certainly wouldn’t mind if the future of digital manufacturing had a few more compact options like these.

Adding Screws To A DIY CNC Machine

When it comes to CNC machines, your SureFine has screws on its axes, and the Bodgeport does too. A shopbot has an amazing rack gear system, but when you start to dig into the small CNC routers available for under $2,000, you’ll only find belts moving a router back and forth. This isn’t to say belts won’t work — you can create a fine CNC machine with bits of rubber. However, belts stretch, they wear out, and if you want more precision screws and racks are the way to go.

The WorkBee CNC machine is the first desktop CNC router we’ve seen that uses screws instead of belts. It’s a project on OpenBuilds, and a reasonably well-configured machine is now available from ooznest for about £1,700 ($2,200 USD), or just a bit more than other CNC routers that consist of a Dewalt router and some aluminum extrusion.

The WorkBee CNC is based on the OX CNC machine, another cartesian router machine built around the OpenBuilds aluminum extrusion. The OX, while a fine machine for DIY tinkerers, uses belts. The WorkBee trades them out for screws, and should gain better accuracy, much lower maintenance, and deeper cuts. Screws are slower, yes, but do you really need that much acceleration when routing a thick piece of wood?

BeamCNC: Computer-Controlled Construction System Mill

Need to make something quick and dirty out of wooden beams, and want to use elements you know will work together? BeamCNC is a mobile assembly of stepper-controlled rollers and a router that sucks a 2×2 through it and drills the holes in pre-programmed intervals. Currently being developed as part of an Indiegogo campaign currently in preview, its creator [Vladislav Lunachev] has declared it open source hardware. It’s essentially a CNC mill that makes Grid Beam, a classic DIY building set that resembles Meccano, Erector, and other classic sets, only made full-scale for larger projects. While BeamCNC is not affiliated with Grid Beam, it takes the same general idea and automates it.

Continue reading “BeamCNC: Computer-Controlled Construction System Mill”

Hackaday Prize Entry: A Manual, CNC Pick And Place Machine

Everyone who wants a 3D printer probably already has one, and even laser cutters and CNC machines are making their way into garages and basements ’round the world. Pick and place machines are the next great frontier of personal manufacturing, and even though that’s a long way off, [Tegwyn]’s project for this year’s Hackaday Prize is bringing us that much closer to popping down 0201 LEDs reliably.

This project is a manual pick and place machine — otherwise known as ‘tweezers’. It’s a bit more complicated than that, because the entire idea behind [Tegwyn]’s build is to decouple a human’s fine motor skills from the ability to place components on a board. To do that, this project is using an off-the-shelf, blue light special CNC machine. There’s not much to it, just a bit of aluminum extrusion and some threaded rods. However, with the addition of a vacuum pump, a hollow needle, and a few manual controls to move the axes around, the operator has very fine control over where a resistor, cap, or LED goes.

There are a few neat additions to the, ‘put a vacuum pump on a CNC machine’ idea. This is a 4 axis machine, giving the user the ability to rotate the part around a pad. There’s also a microscope hooked up to a small monitor mounted to the machine. If you’re assembling hundreds of boards, this is not the machine you want. If, however, you only need a handful, don’t mind spending a few hours placing parts, and don’t want to go insane with tiny QFN packages, this is a great build and a great entry for the Hackaday Prize.

Continue reading “Hackaday Prize Entry: A Manual, CNC Pick And Place Machine”