2022 Hackaday Prize: ArmaLamp Provides Light, No Matter What

Instant access to electric light is a luxury that most of us take for granted, but in times of crisis, the power is often the first thing to go. So whether you’re worried about a natural disaster or the outbreak of war, a reliable source of light is a must-have in your emergency kit. Creator [bobricius] calls his is ArmaLamp the “Armageddon resistant night lamp”, and while we’re not eager to test that particular claim, it certainly looks robust enough to get you through some tough times.

The basic idea behind the ArmaLamp is to make a light source so simple that, outside of being physically destroyed, it can’t fail. That means deleting the mechanical power switch and designing the circuit so the LED light will kick on automatically in the dark. Rather than using a traditional rechargeable battery, the solar powered ArmaLamp stores its charge in a 10 farad supercapacitor that can be charged and depleted daily without having to worry about long-term degradation.

Charging the ArmaLamp with a simple solar cell is clearly out of the question as it would represent not just a single point of failure, but a particularly fragile one at that. Instead, [bobricius] is using an array of six BPW34 photodiodes that come in a hard plastic package. Combined with an efficient driver circuit that can run the LED even when the supercap is down to 0.3 V, leaving the ArmaLamp outside during the day should provide you with four hours of ultra-reliable light every night.

Continue reading “2022 Hackaday Prize: ArmaLamp Provides Light, No Matter What”

Vintage Computer Festival East Raises The Bar Again

When I arrived at the InfoAge Science and History Museum for this year’s Vintage Computer Festival East, I fully expected it to be a reduced event compared to last year. After all, how could it not? Due to the schedule getting shifted around by COVID, show runner Jeffrey Brace and his team had just six months to put together an event that usually gets planned over the course of an entire year. With such a truncated preparation time, they more than deserved a little slack.

But as anyone who attended VCF East 2022 can attest, they didn’t need it. Not only did the event meet the high expectations set by last year’s Festival, it managed to exceed them. There were more workshops, more talks, more vendors, more consignment rooms, more live streams, more…well, everything. This year’s program even got a splash of glossy color compared to the grayscale handout attendees received in October. It was, by any metric you care to use, better than ever.

It does however leave me in somewhat on an unenviable position. As we’ve learned during the pandemic, a virtual representation of an event as extensive as VCF can give you a taste of what’s offered, but all the nuance is lost. Looking at pictures of somebody’s passion project can’t compare to actually meeting the person and seeing that glint of pride in their eye as they walk you through all the details.

So bear that in mind through this rundown of some of the projects that caught my eye. This isn’t  a “best of” list, and the Festival is certainly not a competition. But each attendee will invariably come away with their own handful of favorite memories, so I’ll document mine here. If you’d like to make your own memories, I’d strongly suggest making the trek out to the Jersey Shore come April 2023 for the next Vintage Computer Festival East.

Continue reading “Vintage Computer Festival East Raises The Bar Again”

Building A Swiss Army Lab With Software Defined Instrumentation

It’s a fair bet that anyone regularly reading Hackaday has a voltmeter within arm’s reach, and there’s a good chance an oscilloscope isn’t far behind. But beyond that, things get a little murky. We’re sure some of you have access to a proper lab full of high-end test gear, even if only during business hours, but most of us have to make do with the essentials due to cost and space constraints.

The ideal solution is a magical little box that could be whatever piece of instrumentation you needed at the time: some days it’s an oscilloscope, while others it’s a spectrum analyzer, or perhaps even a generic data logger. To simplify things the device wouldn’t have a physical display or controls of its own, instead, you could plug it into your computer and control it through software. This would not only make the unit smaller and cheaper, but allow for custom user interfaces to be created that precisely match what the user is trying to accomplish.

Wishful thinking? Not quite. As guest host Ben Nizette explained during the Software Defined Instrumentation Hack Chat, the dream of replacing a rack of test equipment with a cheap pocket-sized unit is much closer to reality than you may realize. While software defined instruments might not be suitable for all applications, the argument could be made that any capability the average student or hobbyist is likely to need or desire could be met by hardware that’s already on the market.

Ben is the Product Manager at Liquid Instruments, the company that produces the Moku line of multi-instruments. Specifically, he’s responsible for the Moku:Go, an entry-level device that’s specifically geared for the education and maker markets. The slim device doesn’t cost much more than a basic digital oscilloscope, but thanks to the magic of software defined instrumentation (SDi), it can stand in for eleven instruments — all more than performant enough for their target users.

So what’s the catch? As you might expect, that’s the first thing folks in the Chat wanted to know. According to Ben, the biggest drawback is that all of your instrumentation has to share the same analog front-end. To remain affordable, that means everything the unit can do is bound by the same fundamental “Speed Limit” — which on the Moku:Go is 30 MHz. Even on the company’s higher-end professional models, the maximum bandwidth is measured in hundreds of megahertz.

Additionally, SDI has traditionally been limited to the speed of the computer it was attached to. But the Moku hardware manages to sidestep this particular gotcha by running the software side of things on an internal FPGA. The downside is that some of the device’s functions, such as the data logger, can’t actually live stream the data to the connected computer. Users will have to wait until the measurements are complete before they  pull the results off, though Ben says there’s enough internal memory to store months worth of high-resolution data.

Of course, as soon as this community hears there’s an FPGA on board, they want to know if they can get their hands on it. To that end, Ben says the Moku:Go will be supported by their “Cloud Compile” service in June. Already available for the Moku:Pro, the browser-based application allows you to upload your HDL to the Liquid Instruments servers so it can be built and optimized. This gives power users complete access to the Moku hardware so they can build and deploy their own custom features and tools that precisely match their needs without a separate development kit. Understanding that obsolescence is always a problem with a cloud solution, Ben says they’re also working with Xilinx to allow users to do builds on their own computers while still implementing the proprietary “secret sauce” that makes it a Moku.

It’s hard not to get excited about the promise of software defined instrumentation, especially with companies like Liquid Instruments and Red Pitaya bringing the cost of the hardware down to the point where students and hackers can afford it. We’d like to thank Ben Nizette for taking the time to talk with the community about what he’s been working on, especially given the considerable time difference between the Hackaday Command Center and Liquid’s Australian headquarters. Anyone who’s willing to jump online and chat about FPGAs and phasemeters before the sun comes up is AOK in our book.


The Hack Chat is a weekly online chat session hosted by leading experts from all corners of the hardware hacking universe. It’s a great way for hackers connect in a fun and informal way, but if you can’t make it live, these overview posts as well as the transcripts posted to Hackaday.io make sure you don’t miss out.

NASA’s Giant SLS Rocket Rolled Back For Repairs

There’s little debate that the most exciting move in a rocket’s repertoire is when it launches itself skywards on a column of flame. But failing that, it’s still pretty interesting to see how these massive vehicles get juggled around down here on terra firma before getting fired off into the black. Which is great for anyone interested in NASA’s towering Space Launch System (SLS), as it’s been doing an awful lot of milling about on the ground for a vehicle designed to return humanity to the Moon.

Most recently, the SLS completed a trek from the iconic Vehicle Assembly Building (VAB) to launch pad 39B and back again aboard the same “crawler” that moved the Space Shuttle and Saturn V before it. While the nearly 60-year-old tracked vehicle has received some updates to carry the 98 meter (322 ft) tall booster, clearly the space agency subscribes to the “if it ain’t broke, don’t fix it” school of thought.

The ICPS being loaded onto the SLS

The SLS itself however is definitely in need of some work. The rocket was brought out to the pad for the first time on March 18th, where it was to conduct what’s known as a “wet dress rehearsal” — a test of the pre-flight operations, propellant loading, and countdown that includes everything except engine ignition. Unfortunately, the test was plagued with technical issues, and after three attempts, it was decided to bring the rocket back into the VAB to make the necessary repairs to both it and the ground support equipment.

One issue involves a valve in the Interim Cryogenic Propulsion Stage (ICPS), a propulsion module that’s being used on the early SLS flights to provide the trans-lunar injection (TLI) burn that will send the Orion spacecraft on a course towards the Moon. As the name implies, the ICPS is destined to be replaced with the larger Exploration Upper Stage on later missions. There’s also a leak on the launch tower itself that will need to be addressed. After the identified problems are repaired and some adjustments are made, the SLS will once again be rolled out to the pad to reattempt the launch rehearsal.

Now in development for over a decade, the Space Launch System has been plagued with technical issues and delays. At the same time, commercial launch providers like SpaceX have moved the state of the art forward considerably, leading many to wonder if the mind-bogglingly expensive rocket will be able to compete with in-development vehicles such as Starship and New Glenn. The fact that missions which were previously assigned to the SLS have started to get shifted over to commercial rockets would seem to indicate that even NASA is losing confidence in their flagship program.

Axiom’s Private ISS Mission Was No Space Vacation

In an era where anyone with deep enough pockets can hitch a ride to the edge of space and back, you’d be forgiven for thinking that Axiom’s Ax-1 mission to the International Space Station was little more than a pleasure cruise for the four crew members. Granted it’s a higher and faster flight than the suborbital hops that the likes of William Shatner and Jeff Bezos have been embarking on, but surely it must still be little more than a publicity stunt organized by folks with more money than they know what to do with?

Thankfully, there’s a bit more to it than that. While the mission was privately funded, the Ax-1 crew weren’t just orbital sightseers. For one thing, there was plenty of real-world experience packed into the SpaceX Dragon: the mission was commanded by Michael López-Alegría, a veteran NASA astronaut, and crew members Larry Connor and Eytan Stibbe are both accomplished pilots, with the latter clocking in thousands of hours on various fighter jets during his time with the Israeli Air Force.

But more importantly, they had work to do. Each member of the crew was assigned a list of experiments they were to conduct, ranging from medical observations to the testing of new hardware. Of course there was some downtime — after all, if you spent $50 million on a ticket to space, you’d expect to have at least a little fun — but this wasn’t just a photo op: Axiom was looking for results. There was no hiding from the boss either, as López-Alegría is not just the Mission Commander, he’s also Axiom’s Vice President of Business Development.

Which makes sense when you consider the company’s ultimate goal is to use the ISS as a springboard to accelerate the development of their own commercial space station. The data collected during Ax-1 is going to be critical to Axiom’s path forward, and with their first module already under construction and expected to launch by 2025, there’s no time to waste.

So what did the crew members of the this privately funded mission to the International Space Station accomplish? Let’s take a look at a few of the more interesting entries from the docket.

Continue reading “Axiom’s Private ISS Mission Was No Space Vacation”

Riding Mower CVT Upgrade Really Gets Things Moving

As we’ve learned from past experience, videos from [HowToLou] tend to be a bit controversial. His unique style of expedient engineering isn’t everyone’s cup of tea, especially when it’s combined with a devil-may-care attitude towards safety. On the other hand, there’s no arguing that his methods get results. His video on converting an 18 HP riding mower into something akin to a go-kart is a perfect example.

The first phase of the project involves removing all the hardware related to mowing, as obviously you won’t be cutting any grass while pushing speeds of 48 kph (30 mph). This both saves weight, and removes a lot of mechanical complication that would be in the way of further modification. That said, it also leaves the mower immobile, as there’s no longer be any connection between the engine and transaxle.

The new drivetrain features some beefy bracing.

In its place, [HowToLou] installs an off-the-shelf torque converter kit that uses a continuously variable transmission (CVT) clutch. As he quickly demos, the CVT technology allows the gear ratio to automatically adapt to the engine RPM thanks to pulleys that change their size depending on how fast they’re spinning. It’s a big improvement over the system he originally yanked out, though as you might expect, fitting it into the mower required some custom work. The final step was to pull the old pulley off of the transaxle and replace it with one that’s less than half the original size.

Wearing his protective flip-flops, [HowToLou] hops on the souped-up mower and is nearly thrown off the back of it as soon as he steps on the gas. Clearly the modifications were a success, and the video ends with some open road testing — presumably he’s riding off to the store to go buy a helmet.

We actually missed this video when it first made the rounds, but it has since picked up steam and is pulling in some impressive numbers. [HowToLou] tells us he thinks it’s due to the fact that a lot of people are upgrading to more modern zero-turn mowers, meaning there’s a surplus of these second-hand mini tractors on the market. Whatever the reason, we’re happy to see this backyard engineer get some mainstream success; his methods might not always be by the book, but they’re always entertaining.

Continue reading “Riding Mower CVT Upgrade Really Gets Things Moving”

Building An Edge Lit Sign From The Scrap Pile

Whether in a shop window or mounted to the top of consoles in NASA’s Mission Control Center, edge lit acrylic is a popular choice for making high visibility signs. Partly because of their striking hologram-like appearance, but also because they’re exceptionally cheap and easy to produce. Just how cheap and easy? Take a look at this recent video from [Hack Modular] for a perfect example.

Now you might think you’d need something like a CNC router to produce a sign like this, and for more complex images, that’s arguably the case. But if you’re only concerned with text, and have a fairly steady hand, you can pull off the etching step with nothing more exotic than a printed template and a razor blade. Of course, the LCD style font that [Hack Modular] picked for this sign is particularly well suited to hand cutting — if you’re interested in edge lit calligraphy, this method probably isn’t what you’re looking for.

This linear LED provides a more consistent light.

With the text carved into the acrylic, the only missing ingredient is light. For that, [Hack Modular] is using a 12 volt linear LED strip light. That is, instead of being dotted with individual LEDs like traditional strips, it provides a continuous band of light that’s perfect for this application. That gets stuck down to a scrap piece of wood, and a rusty angle bracket from an old Meccano set is used to hold the acrylic right on the center-line. If you think the final product looks like something that was created from trash, don’t feel bad, that was the intent.

The end result looks great. In fact, if we’re being honest, it’s a lot better than we would have thought was possible using hand tools. Granted the choice of font has a lot to do with that, but then again, we wouldn’t mind if all our edge lit acrylic signs ended up looking like big seven-segment displays either.

Continue reading “Building An Edge Lit Sign From The Scrap Pile”