Will A.I. Steal All The Code And Take All The Jobs?

New technology often brings with it a bit of controversy. When considering stem cell therapies, self-driving cars, genetically modified organisms, or nuclear power plants, fears and concerns come to mind as much as, if not more than, excitement and hope for a brighter tomorrow. New technologies force us to evolve perspectives and establish new policies in hopes that we can maximize the benefits and minimize the risks. Artificial Intelligence (AI) is certainly no exception. The stakes, including our very position as Earth’s apex intellect, seem exceedingly weighty. Mathematician Irving Good’s oft-quoted wisdom that the “first ultraintelligent machine is the last invention that man need make” describes a sword that cuts both ways. It is not entirely unreasonable to fear that the last invention we need to make might just be the last invention that we get to make.

Artificial Intelligence and Learning

Artificial intelligence is currently the hottest topic in technology. AI systems are being tasked to write prose, make art, chat, and generate code. Setting aside the horrifying notion of an AI programming or reprogramming itself, what does it mean for an AI to generate code? It should be obvious that an AI is not just a normal program whose code was written to spit out any and all other programs. Such a program would need to have all programs inside itself. Instead, an AI learns from being trained. How it is trained is raising some interesting questions.

Humans learn by reading, studying, and practicing. We learn by training our minds with collected input from the world around us. Similarly, AI and machine learning (ML) models learn through training. They must be provided with examples from which to learn. The examples that we provide to an AI are referred to as the data corpus of the training process. The robot Johnny 5 from “Short Circuit”, like any curious-minded student, needs input, more input, and more input.

Continue reading “Will A.I. Steal All The Code And Take All The Jobs?”

Stranded Motorist Effects Own Rescue Using A Drone And A Cell Phone

If you’re looking for a good excuse to finally buy a drone, you probably can’t do better than claiming it can save your life.

Granted, you may never find yourself in the position of being stuck in a raging snowstorm in the middle of the Oregon wilderness, but if you do, this is a good one to keep in mind. According to news stories and the Lane County Sheriff Search and Rescue Facebook page, an unnamed motorist who was trying to negotiate an unmaintained road through the remote Willamette National Forest got stuck in the snow. This put him in a bad situation, because not only was he out of cell range, but nobody knew where he was or even that he was traveling, so he wouldn’t be missed for days.

Thankfully, the unlucky motorist played all his cards right. Rather than wandering off on foot in search of help, he stayed with his vehicle, which provided shelter from the elements. Conveniently, he also happened to have a drone along with him, which provided him with an opportunity to get some help. After typing a detailed text message to a friend describing his situation and exact location, he attached the phone to his drone and sent it straight up a couple of hundred feet — enough to get a line-of-sight connection to a cell tower. Note that the image above is a reenactment by the Search and Rescue team; it’s not clear how the resourceful motorist rigged up the drone, but we’re going to guess duct tape was involved.

When he brought the drone back down a few minutes later, he found that the queued text had been sent, and the cavalry was on the way. The Search and Rescue unit was able to locate him, and as a bonus, also found someone else nearby who had been stranded for days. So it was a win all around thanks to some clever thinking and a little technology.

A display based on magnetic viewing film

Moving Magnet Draws Stylish Shapes On Flexible Film

[Moritz v. Sivers] has a knack for making his own displays, which are typically based on some obscure physical effect. Magnetic viewing films, those thin plastic sheets that change color in response to a magnetic field, are his latest area of interest, as you can see in his Magnetic Kinetic Art Display.

The overall idea of the display is similar to a kinetic sand art table, in which a ball traces out shapes in a pile of sand. In [Moritz]’s project, the magnetic viewing film is the sand, and a 2 mm diameter magnet is the ball. The magnet is moved along the film by two sets of coils embedded inside a flex PCB mounted just below the film. One set of coils, on the top layer of the PCB, moves the magnet in the x direction, while a second set on the bottom layer moves it in the y direction.

A flex PCB with coils on both sides
The flex PCB is small, but carries lots of windings

[Moritz] used a flex PCB not because it had to be bendy, but to keep the two sets of coils as close together in the z direction as possible. This helps to avoid a big difference in strength between the two directions. To drive the coils, he used a pair of TB6612FNG stepper motor drivers, controlled by a Wemos D1 Mini.

The housing was 3D printed mostly from PLA, but with a few bits done in PETG. This was for structural rigidity as well as thermal performance — the coils can carry up to two amps and get pretty warm as a result.

The video, embedded below, shows some of the shapes that can be drawn: squares, spirals and even digits to turn the display into a clock. [Moritz] got the PCB coil idea from a project by [bobricius], and cleverly extended it into a useful product. It’s not the first time [Moritz] used magnetic viewing film to make a clock, either.

Continue reading “Moving Magnet Draws Stylish Shapes On Flexible Film”

Pulling Data From HDMI RF Leakage

A long-running story in the world of electronic security has been the reconstruction of on-screen data using RF interference from monitors or televisions. From British TV detector vans half a century ago to 1980s scare stories about espionage, it was certainly easy enough to detect an analogue CRT with nothing more than an AM broadcast radio receiver. But can this still be done in the digital age? It’s something [Windytan] has looked into, as she reconstructs images using leakage from HDMI cables.

The tale starts with a mystery RF noise, soon identified as not unlike the scanning frequencies of a video signal. Plotting the noise intensities while treating the supposed scanning frequencies as video synchronization yields a shadowy version of her Raspberry Pi desktop, so she’s on to something. It’s important to note that this isn’t a video signal she’s receiving, but the noise associated with the bit transitions in an uncompressed digital video stream, so she quickly concludes that trying to resolve color would be futile.

It does however leave the tantalizing possibility of using this as a medium to wirelessly export data from a compromised machine, and it’s down this route she goes. She finally arrives on a scheme of encoding data as lines of individual colors that look like interference patterns over a desktop, and from there can send and retrieve files. It works for digital audio streams, and as shown in the video below, even an MJPEG video stream, hidden in the noise from a video signal. That’s impressive work, by any standard!

We covered those BBC detector vans in detail a while back.

Continue reading “Pulling Data From HDMI RF Leakage”

Powercore Aims To Bring The Power Of EDM To Any 3D Printer

The desktop manufacturing revolution has been incredible, unleashing powerful technologies that once were strictly confined to industrial and institutional users. If you doubt that, just look at 3D printing; with a sub-$200 investment, you can start making parts that have never existed before.

Sadly, though, most of this revolution has been geared toward making stuff from one or another type of plastic. Wouldn’t it be great if you could quickly whip up an aluminum part as easily and as cheaply as you can print something in PLA? That day might be at hand thanks to Powercore, a Kickstarter project that aims to bring the power of electric discharge machining (EDM) to the home gamer. The principle of EDM is simple — electric arcs can easily erode metal from a workpiece. EDM machines put that fact to work by putting a tool under CNC control and moving a precisely controlled electric arc around a workpiece to machine complex shapes quickly and cleanly.

Compared to traditional subtractive manufacturing, EDM is a very gentle affair. That’s what makes EDM attractive to the home lab; where the typical metal-capable CNC mill requires huge castings to provide the stiffness needed to contain cutting forces, EDM can use light-duty structures and still turn out precision parts. In fact, Powercore is designed to replace the extruder of a bog-standard 3D printer, and consists almost entirely of parts printed on the very same machine. The video below shows a lot of detail on Powercore, including the very interesting approach to keeping costs down by creating power resistors from PCBs.

While we tend to shy away from flogging crowdfunded projects, this one really seems like it might make a difference to desktop manufacturing and be a real boon to the home lab. It’s also worth noting that this project has roots in the Hackaday community, being based as it is on [Dominik Meffert]’s sinker EDM machine.

Continue reading “Powercore Aims To Bring The Power Of EDM To Any 3D Printer”

A Ground Source Heat Pump From An Air Conditioner

When it comes to lower-energy home heating, it’s accurate in all senses to say that heat pumps are the new hotness. But unless you happen to work with them professionally, it’s fair to say their inner workings are beyond most of us. Help is at hand though courtesy of [petey53], who made his own ground source heat pump for his Toronto house using a pair of window-mounted air conditioning units.

Continue reading “A Ground Source Heat Pump From An Air Conditioner”

Hacking A €15 8051-Based Portable Soldering Iron With Custom Firmware

With soldering irons being so incredibly useful, and coming on the heels of the success of a range of portable, all-in-one soldering irons from the likes of Waveshare and Pine64, it’s little wonder that you can get such devices for as little as 10 – 15 Euro from websites like AliExpress. Making for both a great impulse buy and reverse-engineering target, [Aaron Christophel] got his mittens on one and set to work on figuring out its secrets.

The results are covered in a brief video, as well as a Twitter thread, where this T12 soldering iron’s guts are splayed around and reprogrammed in all their glory. Despite the MCU on the PCB having had its markings removed, some prodding and poking around revealed it to be an STC8H3K62S2, an 8051-based MCU running at a blistering 11 MHz. As a supported PlaformIO target, reprogramming the MCU wasn’t too complicated after wiring up a USB-TTL serial adapter.

Completing this initial foray into these cheap T12 soldering irons is the GitHub repository, which contains the pin-outs, wiring diagrams and further information. Although [Aaron] indicates that he’ll likely not pursuing further development, the mixed responses by people to the overall quality of the firmware on the as-purchased T12 may inspire others to give it a shake.

Continue reading “Hacking A €15 8051-Based Portable Soldering Iron With Custom Firmware”