Old 3D CAD Mouse Gets New Lease Of Life

[Jacek Fedorynski] had an old Magellan/SpaceMouse 3D mouse with a serial interface which made it impossible for him to use with modern hardware and software. The problem he faced was two pronged – the absence of serial interfaces in the hardware and the lack of appropriate drivers for the operating system. So he built a low cost, simple adapter to use his RS-232 Magellan/SpaceMouse with modern software.

The hardware required to build the adapter was minimal. A Raspberry Pi Pico, a MAX3238 based RS-232 adapter, a null modem adapter and a DB9 gender changer. Of course, a combination null modem – gender changer would have made things even simpler. Four of the GPIO pins from the Pico are mapped to the serial RX, TX, RTS and CTS pins.

On the software side, the code emulates a 3DConnexion SpaceMouse Compact, so it can be used with software like Fusion 360, 3ds Max, SolidWorks, Inventor, Maya and many others. On the host computer, only the standard 3DxWare driver package is needed. On the host computer, the old Magellan/SpaceMouse 3D will appear like a modern SpaceMouse Compact connected over USB. The only downside to this is that the SpaceMouse Compact has just two programmable buttons, so only two of the many buttons on the old Magellan mouse can be mapped.

Flashing the code to the Pico is also straightforward using the BOOTSEL mode. Hold down the BOOTSEL button when plugging in the Pico and it appears as a drive onto which you can drag a new UF2 file. Just drag-n-drop [Jacek]’s magellan.uf2 firmware and you’re done.

If you’d rather build your own, modern 3D mouse, check out the DIY Cad Mouse You Can Actually Build.

A vintage film camera with a bright light emitting diode shining through it, next to electronic equipment to measure the shutter speed

Clock Your Camera With This Shutter Speed Tester

Camera shutter speed is an essential adjustment in photography – along with the aperture, the shutter moderates the amount of light entering the camera. Older cameras (and some newer ones) use mechanical shutters that creep out-of-spec over the years, so [Dean Segovis] built a handy shutter speed tester.

With just a handful of basic components, this project is a great one for beginners to sink their teeth into. The tester is based around a photoresistor that measures light from another source (a flashlight) that travels through the camera body. When the shutter on the camera is released, the shutter speed can be measured and displayed on the OLED screen. An Arduino naturally handles all the computational duties. The whole thing can be easily assembled on a breadboard in just a couple of minutes.

The original project by [hiroshootsfilm] is over on Project Hub, however [Dean] takes a deeper dive with some code troubleshooting, as well as trying out a variety of old film cameras with the breadboard tester. His testing revealed that the photoresistor was better able to detect shutter speed when the camera lens was removed, which is a hot tip for anyone else that wants to try this.

While it’s not surprising that these older cameras are having trouble with their mechanical shutters, this little tester would be an invaluable tool when it comes time to start tweaking shutter mechanisms. If this project has brought out the shutterbug in you, make sure to check out this brain transplant for a Polaroid 100-series Packfilm camera that we covered way back in 2011.

Continue reading “Clock Your Camera With This Shutter Speed Tester”

A white longtail cargo bike sits on grass with fenced-in planters behind it. The bike has a basket made of black metal tubes on the front and a passenger compartment behind the rider seat for children made of similar black metal tubes. A white canopy is above the passenger compartment and a solar panel sits atop the canopy.

Solar Powered E-bike Replaces Car Trips

E-bikes can replace car trips for some people, and adding a solar panel can make the fun last longer. [Luke] did some heavy modifications to his RadWagon to make it better, stronger, and faster than it was before.

The first step was replacing the stock 750 W controller with a 1500 W model to give the motor twice the power. [Luke] plans to replace the motor if it gets fried pushing too much juice, but is planning on just being careful for now. To stop this super-powered ride, he swapped the stock mechanical discs out for a hydraulic set which should be more reliable, especially when loading down this cargo bike.

On top of these performance enhancements, he also added a 50 W solar panel and maximum power point tracking (MPPT) charge controller to give the bike a potential 50% charge every day. Along with the OEM kid carrier and roof, this bike can haul kids and groceries while laughing at any hills that might come its way.

Checkout this other solar e-bike or this one making a trip around the world for more fun in the sun.

Fox Fined For Using EAS Tone In Football Ad

The Boy Who Cried Wolf is a simple parable that teaches children the fatal risk of raising a false alarm. To do so is to risk one’s life when raising the alarm about a real emergency that may go duly ignored.

Today, we rarely fear wolves, and we don’t worry about them eating us, our sheep, or our children. Instead, we worry about bigger threats, like incoming nuclear weapons, tornadoes, and earthquakes. We’ve built systems to warn us of these calamities, and authorities take a very dim view of those who misuse these alarms. Fox did just that in a recent broadcast, using a designated alarm tone for an advert. This quickly drew the attention of the Federal Communication Commission.
Continue reading “Fox Fined For Using EAS Tone In Football Ad”

Come Join Us For Hackaday Berlin!

It’s been far too long since we’ve had an event in Europe, and we’re going to fix that right now. Hackaday Berlin 2023 will be a day-long conference full of great talks, badge hacking, music, art, madness, and gathering with your favorite hackers on Saturday, March 25.

But it doesn’t stop there. We’ll have a pre-event party Friday night, and then a bring-a-hack brunch on Sunday with further opportunities to show off whatever projects you’re bringing along, hack some more on the badge, wind down, and/or play together. So if your travel plans allow it, come in Friday mid-day and don’t schedule your return ticket until Sunday evening.

Cutting to the chase: early bird tickets are on sale right now, so go get one! But even if you miss out on those, and they’ll go like hotcakes, the regular tickets are well worth it. Everything is fully catered, the badge and the swag are phenomenal, and the talks will be first-rate.

Last time we were in Europe, the party went on until 2 AM!

Saturday’s main events will include a handful of fantastic invited guest talks, but also a few hours of Lightning Talks given by you – yes, you! If you’ve never attended a lightning talk, you get seven minutes to run through one of your favorite projects. We want to know what’s on your workbench right now, what new skills you’ve been teaching yourself, or the groundwork you’ve been laying for the next big project. It’s your chance to inspire everyone in the room – grab it.

Everyone asked us to do a second run of the 2022 Hackaday Supercon badge, and now we’ve got the perfect excuse! Designed by Voja Antonic, the badge is a standalone retrocomputer in the style of an Altair or similar, but it’s much more. Between blinking LEDs that display everything going on, down to the gates in the ALU, and a trimmed-down machine language, it’s an invitation to get deeply in touch with the machine. If you felt left out because you couldn’t travel to Pasadena last November, here’s your second chance.

And then there’s the crowd. Hackaday really is a global community of hackers, and Hackaday events tend to bring out the best. Even if you’re not planning to give a lightning talk (and you should!) be prepared to talk about what you’re doing, because everyone else there is just as interested in cool projects as you are. Hackaday Berlin will be a great opportunity to connect and reconnect with new and old friends alike. Come join us!

We’ll be following up with a speaker announcement next week, but if you have any questions, let us know in the comments below. Otherwise, we’ll see you in Berlin.

Count Leading Zeros For Efficient Logarithms

[Ihsan Kehribar] points out a clever trick you can use to quickly and efficiently compute the logarithm of a 32-bit integer. The technique relies on the CLZ instruction which counts the number of leading zeros in a machine word and is available in many modern processors. Typical algorithms used to compute logarithms are not quick and have a variable execution time depending on the input value. The technique [Ihsan] is using is both fast and has a constant run time.

The above equation summarized the math behind the algorithm. We get the first term easily using the CLZ instruction. Using the remainder and a pre-computed lookup table, it is possible to get the second term to various degrees of accuracy, depending on how big you make the table and whether or not you take the performance hit of interpolation or not — those of a certain age will no likely groan at the memory of doing interpolation by hand from logarithm tables in high school math class. [Ihsan] has posted an MIT-licensed implementation of this technique in his GitHub repository, which includes both the C-language algorithm and Python tools to generate the lookup table and evaluate the errors.

Why would you do this? Our first thought was real-time streaming DSP operations, where you want fast and deterministic calculations, and [Ihsan]’s specifically calls out embedded audio processing as one class of such applications. And he should know, after all, since he developed a MIDI capable polyphonic FM synthesizer on a Cortex M0 that we covered way back in 2015.

All About USB-C: Manufacturer Sins

People experience a variety of problems with USB-C. I’ve asked people online about their negative experiences with USB-C, and got a wide variety of responses, both on Twitter and on Mastodon. In addition to that, communities like r/UsbCHardware keep a lore of things that make some people’s experience with USB-C subpar.

In engineering and hacking, there’s unspoken things we used to quietly consider as unviable. Having bidirectional power and high-speed data on a single port with thousands of peripherals, using nothing but a single data pin – if you’ve ever looked at a schematic for a proprietary docking connector attempting such a feat, you know that you’d find horrors beyond comprehension. For instance, MicroUSB’s ID pin quickly grew into a trove of incompatible resistor values for anything beyond “power or be powered”. Laptop makers had to routinely resort to resistor and one-wire schemes to make sure their chargers aren’t overloaded by a laptop assuming more juice than the charger can give, which introduced a ton of failure modes on its own.

When USB-C was being designed, the group looked through chargers, OTG adapters, display outputs, docking stations, docking stations with charging functions, and display outputs, and united them into a specification that can account for basically everything – over a single cable. What could go wrong?

Of course, device manufacturers found a number of ways to take everything that USB-C provides, and wipe the floor with it. Some of the USB-C sins are noticeable trends. Most of them, I’ve found, are manufacturers’ faults, whether by inattention or by malice; things like cable labelling are squarely in the USB-C standard domain, and there’s plenty of random wear and tear failures.

I don’t know if the USB-C standard could’ve been simpler. I can tell for sure that plenty of mistakes are due to device and cable manufacturers not paying attention. Let’s go through the notorious sins of USB-C, and see what we can learn. Continue reading “All About USB-C: Manufacturer Sins”