Electric Clothes Drier Repair Heats Things Up

clothes-dryer-fix

[How To Lou] sure has shown us how to do quite a few things. This time he’s dealing with an electric clothes dryer that won’t heat. We’ve been elbow deep in our own appliances and we think [Lou’s] matter-of-fact demonstration will help you gain the confidence to investigate problems before deciding if it’s a job to be relegated to the repair man.

This picture shows the back side of a clothes dryer after having a protective panel removed. Just out of frame is a functional schematic which lists each part and it’s resistance measurement. Lou has labelled those parts in this image to help us understand what we’re looking at. In the video after the break he begins doing the same troubleshooting that a repair would use. He grabbed his multimeter and used it to test the resistance of each component after removing the wires from it. All of them should read zero Ohms except for the heater coil which the schematic rates at 7.8-11.8 Ohms. The high limit thermostat is loose and measures an infinite resistance. This, coupled with the charred wire on one side is the culprit. As with that ice maker repair from yesterday, [Lou] searches for the numbers on the part to find the replacement he needs.

Continue reading “Electric Clothes Drier Repair Heats Things Up”

A white stairwell ceiling with a rack holding clothes. The rack follows the slope of the ceiling and is attached to a series of ropes and pulleys to let it got up and down.

Stairway Drying Rack Rises Above The Rest

Finding space to dry clothes can be challenging in smaller spaces. [Tom Parker] solved this conundrum in his one bedroom apartment by putting a drying rack in his stairwell.

By making the laundry rack fold up above the stairwell, [Parker] can dry his clothes without them taking up a lot of precious floor space. A pole is used to is raise and lower a dowel rod attached to two lines of paracord running over pulleys and to the end of the rack. Each moving corner of the rack also has a set length of cord attached to prevent the rack from rotating too far down as well as providing a safety mechanism should one of the other lines of cord snap.

The rack is bolted-together, laser cut 1.5mm thick mild steel with 15 mm dowels attached to the sides via threaded inserts. Spacing is set for the raised rack to put clothes at 75 mm apart. Plywood pieces interface the rack with the wall to avoid damaging the drywall.

If you’re looking for more laundry hacks, check out this Smart Clothes Dryer or How Robots Suck at Folding Laundry.

Robots Are Folding Laundry, But They Suck At It

Robots are used in all sorts of industries on a wide variety of tasks. Typically, it’s because they’re far faster, more accurate, and more capable than we are. Expert humans could not compete with the consistent, speedy output of a robotic welder on an automotive production line, nor could they as delicately coat the chocolate on the back of a KitKat.

However, there are some tasks in which humans still have the edge. Those include driving, witty repartee, and yes, folding laundry. That’s not to say the robots aren’t trying, though, so let’s take a look at the state of the art.

Continue reading “Robots Are Folding Laundry, But They Suck At It”

Hackaday Links Column Banner

Hackaday Links: October 24, 2021

It seems that the engineers of NASA’s Lucy spacecraft have some ‘splaining to do. The $981M asteroid-seeking mission launched without a hitch, but when the two solar panels unfolded, one of them failed to latch into place. Lucy’s two large solar arrays combine to an impressive 51 square meters. Both are critical to this 12-year mission as it will travel farther from the Sun than any previous spacecraft, and be gone for longer. The problem is that Lucy is on an escape route, and so they can’t just sidle up to her with a repair craft. Even so, NASA and Lockheed are “pretty optimistic” that they can fix the problem somehow. On the bright side, both solar arrays are providing power and charging batteries inside the cockpit.

It’s kind of hard to believe, but KDE is turning 25 this year! Well, the actual anniversary date (October 14th) has already passed, but the festivities continue through the 25th when KDE founder Matthias Ettrich delivers a fireside chat at 17:00 UTC. Registration begins here.

EnergyStar, purveyors of appliance efficiency ratings and big yellow stickers, will no longer recommend gas-powered water heaters, furnaces, and clothes dryers on their yearly Most Efficient list. They will continue to give them ratings, however. This move was prompted by several environmentalist groups who pointed out that continuing to recommend gas appliances would not put America on track to reach Biden’s 2050 net-zero carbon emissions goal, since they produce greenhouse gases. We totally understand the shift away from gas, but not so much the nitty gritty of this move, which the article presents as exclusive of any appliance that doesn’t run on 100% clean energy. You can’t prove that a user’s electricity is renewable. For example, this consumer is well aware that the energy company in her town still burns coal for the most part. Anyway, here’s the memo. And a PDF warning.

Sure, you can trawl eBay for space rocks, but how do you know for sure that you’re getting a real meteorite? You could play the 1 in 100 billion or so odds that one will just fall in your lap. Just a few weeks ago, a meteorite crashed through a British Columbia woman’s ceiling and landed between two decorative pillows on her bed, narrowly missing her sleeping head. Ruth Hamilton awoke to the sound of an explosion, unaware of what happened until she saw the drywall dust on her face and looked back at the bed. The 2.8 pound rock was the size of a large man’s fist and was one of two meteorites to hit Golden, BC that evening. The other one landed safely in a field.

Hackaday alum Jeremy Cook wrote in to give us a heads up that his newest build, the JC Pro Macro 2, is currently available through Kickstarter. It’s exactly what it sounds like — a Pro Micro-powered macro pad. But this version is packed with extra keyswitches, blinkenlights, and most importantly for the Hackaday universe, broken out GPIO pins. Do what you will with the eight switches, rotary encoder, and optional OLED screen, and do it with Arduino or QMK. Jeremy is offering a variety of reward levels, from bare boards with SMT LEDs soldered on to complete kits, or fully assembled and ready to go.

Hackaday Links Column Banner

Hackaday Links: April 11, 2021

Bad news, Martian helicopter fans: Ingenuity, the autonomous helicopter that Perseverance birthed onto the Martian surface a few days ago, will not be taking the first powered, controlled flight on another planet today as planned. We’re working on a full story so we’ll leave the gory details for that, but the short version is that while the helicopter was undergoing a full-speed rotor test, a watchdog timer monitoring the transition between pre-flight and flight modes in the controller tripped. The Ingenuity operations team is going over the full telemetry and will reschedule the rotor test; as a result, the first flight will occur no earlier than Wednesday, April 14. We’ll be sure to keep you posted.

Anyone who has ever been near a refinery or even a sewage treatment plant will have no doubt spotted flares of waste gas being burned off. It can be pretty spectacular, like an Olympic torch, but it also always struck us as spectacularly wasteful. Aside from the emissions, it always seemed like you could at least try to harness some of the energy in the waste gasses. But apparently the numbers just never work out in favor of tapping this source of energy, or at least that was the case until the proper buzzword concentration in the effluent was reached. With the soaring value of Bitcoin, and the fact that the network now consumes something like 80-TWh a year, building portable mining rigs into shipping containers that can be plugged into gas flaring stacks at refineries is now being looked at seriously. While we like the idea of not wasting a resource, we have our doubts about this; if it’s not profitable to tap into the waste gas stream to produce electricity now, what does tapping it to directly mine Bitcoin really add to the equation?

What would you do if you discovered that your new clothes dryer was responsible for a gigabyte or more of traffic on your internet connection every day? We suppose in this IoT world, such things are to be expected, but a gig a day seems overly chatty for a dryer. The user who reported this over on the r/smarthome subreddit blocked the dryer at the router, which was probably about the only realistic option short of taking a Dremel to the WiFi section of the dryer’s control board. The owner is in contact with manufacturer LG to see if this perhaps represents an error condition; we’d actually love to see a Wireshark dump of the data to see what the garrulous appliance is on about.

As often happens in our wanderings of the interwebz to find the very freshest of hacks for you, we fell down yet another rabbit hole that we thought we’d share. It’s not exactly a secret that there’s a large number of “Star Trek” fans in this community, and that for some of us, the way the various manifestations of the series brought the science and technology of space travel to life kick-started our hardware hacking lives. So when we found this article about a company building replica Tricorders from the original series, we followed along with great interest. What we found fascinating was not so much the potential to buy an exact replica of the TOS Tricorder — although that’s pretty cool — but the deep dive into how they captured data from one of the few remaining screen-used props, as well as how the Tricorder came to be.

And finally, what do you do if you have 3,281 drones lying around? Obviously, you create a light show to advertise the launch of a luxury car brand in China. At least that’s what Genesis, the luxury brand of carmaker Hyundai, did last week. The display, which looks like it consisted mostly of the brand’s logo whizzing about over a cityscape, is pretty impressive, and apparently set the world record for such things, beating out the previous attempt of 3,051 UAVs. Of course, all the coverage we can find on these displays concentrates on the eye-candy and the blaring horns of the soundtrack and gives short shrift to the technical aspects, which would really be interesting to dive into. How are these drones networked? How do they deal with latency? Are they just creating a volumetric display with the drones and turning lights on and off, or are they actually moving drones around to animate the displays? If anyone knows how these things work, we’d love to learn more, and perhaps even do a feature article.

How Many Punches Does It Take?

Do you ever wonder just how many punches you have thrown? The answer is going to be different if you happen to use a punching bag as part of your exercise routine. So is the case with the [DuctTapeMechanic] and while restoring an old speed ball punching bag, he decided to combine his passions for sports and electronics by adding a punch counter.

Perhaps most interesting in this build is the method used to monitor the bag. A capacitance proximity sensor most often used for industrial automation is mounted in the wooden base. He just calls it “an NPN capacitive sensor” without mentioning part number but these are rather easy to find from the usual places. It has no problem sensing each punch — assuming you swing strong enough so that the bag comes near the sensor. Two battery packs, an Arduino, and an optocoupler round out the bill of materials. We were a little disappointed not to see any duct tape in the construction of this project, but since the electronics are outside and exposed to the elements, maybe duct tape will be used to install a roof in a future episode.

The [DuctTapeMechanic] likes to repurpose items which would otherwise be thrown away, which is something to be applauded. The frame of this punching bag was welded from a discarded metal bed frame (a regular occupant of crawl spaces and self storage places), and you might remember he repurposed the electric motor from a discarded clothes dryer last month, changing it into a disk sander.

Continue reading “How Many Punches Does It Take?”

The RFI Hunter: Looking For Noise In All The Wrong Places

Next time you get a new device and excitedly unwrap its little poly-wrapped power supply, remember this: for every switch-mode power supply you plug in, an amateur radio operator sheds a tear. A noisy, broadband, harmonic-laden tear.

The degree to which this fact disturbs you very much depends upon which side of the mic you’re on, but radio-frequency interference, or RFI, is something we should all at least be aware of. [Josh (KI6NAZ)] is keenly aware of RFI in his ham shack, but rather than curse the ever-rising noise floor he’s come up with some helpful tips for hunting down and eliminating it – or at least reducing its impact.

Attacking the problem begins with locating the sources of RFI, for which [Josh] used the classic “one-circuit-at-a-time” approach – kill every breaker in the panel and monitor the noise floor while flipping each breaker back on. This should at least give you a rough idea of where the offending devices are in your house. From there, [Josh] used a small shortwave receiver to locate problem areas, like the refrigerator, the clothes dryer, and his shack PC. The family flat-screen TV proved to be quite noisy too. Remediation techniques include wrapping every power cord and cable around toroids or clamping ferrite cores around them, both on the offending devices and in the shack. He even went so far as to add a line filter to the dryer to clamp down on its unwanted interference.

Judging by his waterfall displays, [Josh]’s efforts paid off, bringing his noise floor down from S5 to S1 or so. It’s too bad he had to take matters into his own hands – it’s not like the FCC and other spectrum watchdogs don’t know there’s a problem, after all.

Continue reading “The RFI Hunter: Looking For Noise In All The Wrong Places”