Hacking The Lidl Home Gateway

For years, Europeans have been browsing the central aisles of the German Aldi and Lidl supermarket chains, attracted by the surprising variety of transitory non-grocery bargains to be found there. There are plenty of temptations for hackers, and alongside the barbecues and Parkside tools at Lidl last year was a range of Zigbee home automation products. Every ZigBee network requires some form of hub, and for Lidl this comes in the form of a £20 (about $28) Silvercrest Home Gateway appliance. It’s a small embedded Linux computer at heart, and [Paul Banks] has published details of how it can be hacked and bent to the user’s will.

Under the hood is a Realtek RTL8196E MIPS SoC with 16Mb of Flash and 32 Mb of memory. Gaining control of it follows the well trodden path of finding the bootloader, dumping the firmware, and re-uploading it with a known password file. If you’ve done much hacking of routers and the like you’ll recognise that this quantity of memory and Flash isn’t the most powerful combination so perhaps you won’t be turning it into a supercomputer, but it’s still capable enough to be integrated with Home Assistant rather than the cloud-based services with which it shipped.

There was a time when repurposing routers as embedded Linux machines was extremely popular, but it’s something that has fallen from favour as boards such as the Raspberry Pi have provided an easier path. So it’s good to see a bit of old-fashioned fun can still be had with an inexpensive device.

If you fancy a bit more German budget supermarket goodness, feast your eyes on an Aldi stick welder!

What Every Geek Must Know

How is it possible that there’s a geek culture? I mean, it’s one thing to assume that all folks of a nerdy enough bent will know a little Ohm’s law, can fake their way through enough quantum mechanics to at least be interesting at a cocktail party, and might even have a favorite mnemonic for the resistor colors or the angles involved in sine, cosine, and tangents. But how is it that we all know the answer to life, the universe, and everything?

Mike and I were podcasting a couple of weeks back, and it came out that he’d never played Starcraft. I was aghast! Especially since he’s into video games in general, to have not played the seminal 3-way-without-being-rock-scissors-paper game! My mind boggled. But then again, there was a time in my life when I hadn’t actually read all of Dune or Cryptonomicon, which would have left Mike’s jaw on the floor.

Whether you prefer Star Trek or Star Wars, the Matrix or the Hobbit, it’s even more surprising that we have so much in common! And thinking about it, I’m pretty sure that exactly our interchange is the reason — it’s a word of mouth culture thing. Some folks at the hackerspace are talking about Cthulu, and chances are you’re going to be reading some Lovecraft. An argument about the plausibility of the hacks in The Martian has sent at least a couple of geeks to the cinema or the library. And so it goes.

So do your part! Share your geek-culture recommendations with us all in the comments. If you were stranded on a desert island, with a decent bookshelf and maybe even a streaming video service, what’s on your top-10 list? What do you still need to see, read, or hear?

Raspberry Pi Zero Takes The Wheel In Miniature Fighting Robot

Looking to capitalize on his familiarity with the Raspberry Pi, [Sebastian Zen Tatum] decided to put the diminutive Pi Zero at the heart of his “antweight” fighting robot, $hmoney. While it sounds like there were a few bumps in the road early on, the tuxedoed bot took home awards from the recent Houston Mayhem 2021 competition, proving the year of Linux on the battle bot is truly upon us.

Compared to using traditional hobby-grade RC hardware, [Sebastian] says using the Pi represented a considerable cost savings. With Python and evdev, he was able to take input from a commercial Bluetooth game controller and translate it into commands for the GPIO-connected motor controllers. For younger competitors especially, this more familiar interface can be seen as an advantage over the classic RC transmitter.

A L298N board handles the two N20 gear motors that provide locomotion, while a Tarot TL300G ESC is responsible for spinning up the brushless motor attached to the “bow tie” spinner in the front. Add in a Turnigy 500mAh 3S battery pack, and you’ve got a compact and straightforward electronics package to nestle into the robot’s 3D printed chassis.

In a Reddit thread about $hmoney, [Sebastian] goes over some of the lessons his team has learned from competing with their one pound Linux bot. An overly ambitious armor design cost them big at an event in Oklahoma, but a tweaked chassis ended up making them much more competitive.

There was also a disappointing loss that the team believes was due to somebody in the audience attempting to pair their phone with the bot’s Pi Zero during the heat of battle, knocking out controls and leaving them dead in the water. Hopefully some improved software can patch that vulnerability before their next bout, especially since everyone that reads Hackaday now knows about it…

While battles between these small-scale bots might not have the same fire and fury of the televised matches, they’re an excellent way to get the next generation of hackers and engineers excited about building their own hardware. We wish [Sebastian] and $hmoney the best of luck, and look forward to hearing more of their war stories in the future.

A 3D Printer With An Electromagnetic Tool Changer

The versatility of 3D printers is simply amazing. Capable of producing a wide variety of prototypes, miscellaneous parts, artwork, and even other 3D printers, it’s an excellent addition to any shop or makerspace. The smaller, more inexpensive printers might do one type of printing well with a single tool, but if you really want to take a 3D printer’s versatility up to the next level you may want to try one with an automatic tool changing system like this one which uses magnets.

This 3D printer from [Will Hardy] uses an electromagnet to attach the tool to the printer. The arm is able to move to the tool storage area and quickly deposit and attach various tools as it runs through the prints. A failsafe mechanism keeps the tool from falling off of the head of the printer in case of a power outage, and several other design features were included to allow others to tweak this design to their own particular needs, such as enclosing the printer and increasing or decreasing the working area of the Core-XY printer as needed.

While the project looks like it works exceptionally well, [Will] notes that it is still in the prototyping phase and needs work on the software in order to refine its operation and make it suitable for more general-purpose uses. It’s an excellent design though and shows promise. It also reminds us of this other tool-changing system we featured a few months ago, albeit with a less electromagnetic twist.

Continue reading “A 3D Printer With An Electromagnetic Tool Changer”

TV Ambient Lighting Built For Awesome Performance

[AndrewMohawk] had seen all kinds of ambient lighting systems for TVs come and go over the years, and the one thing they all had in common was that they didn’t live up to his high standards. Armed with the tools of the hacker trade, he set about building an Ambilight-type system of his own that truly delivered the goods.

The development process was one full of roadblocks and dead ends, but [Andrew] persevered. After solving annoying problems with HDCP and HDMI splitters, he was finally able to get a Raspberry Pi to capture video going to his TV and use OpenCV to determine the colors of segments around the screen. From there, it was simple enough to send out data to a string of addressable RGB LEDs behind the TV to create the desired effect.

For all the hard work, [Andrew] was rewarded with an ambient lighting system that runs at a healthy 20fps and works with any HDMI video feed plugged into the TV. It even autoscales to work with video content shot in different aspect ratios so the ambient display always picks up the edge of the video content.

With 270 LEDs fitted, the result is an incredibly smooth and fluid ambient display we’d love to have at home. You can build one too, since [Andrew] shared all the code on Github. As an added bonus, he also gave the system an audio visualiser, and tested it out with some Streetlight Manifesto, the greatest third-wave ska band ever to roam the Earth. The Fourth Wave still eludes us, but we hold out hope.

We’ve seen plenty of hacks in this vein before; one of the most impressive hacked a smart TV into doing the video processing itself. Video after the break.

Continue reading “TV Ambient Lighting Built For Awesome Performance”

Balloon Antenna Doesn’t Need A Tower

What do you do with floral wire and balloons from Dollar Tree? If you are [Ham Radio Crash Course], you make a ham radio antenna. Floral wire is conductive, and using one piece as a literal sky hook and the other as a ground wire, it should do something. He did use, as you might expect, a tuner to match the random wire length.

The first attempt had too few balloons and too much wind. He eventually switched to a non-dollar store helium tank. That balloon inflates to about 36 inches and appears to have plenty of lift. It looks like by the end he was using two of them.

Continue reading “Balloon Antenna Doesn’t Need A Tower”

Open-Source Method Makes Possible Two-Layer PCBs With Through-Plating At Home

If the last year and its supply chain problems have taught us anything, it’s the value of having a Plan B, even for something as commoditized as PCB manufacturing has become. If you’re not able to get a PCB made commercially, you might have to make one yourself, and being able to DIY a dual-layer board with plated-through vias might just be a survival skill worth learning.

Granted, [Hydrogen Time]’s open-source method, which he calls “Process 01”, is something that he has been working on for years now. And it’s quite the feat of chemistry, which may require you to climb a steep learning curve, depending on how neglected the skills from high school or college chemistry are. But for as complex as Process 01 is, it’s actually pretty straightforward, and the first video below covers it in extreme detail. It starts with a drilled double-sided copper-clad board, which after cleaning is given a bath in palladium chloride. A follow-up dunk in stannous chloride leaves a thin film of palladium metal over all surfaces, even the via walls. This then acts as a catalyst for electroless copper plating in a solution of copper sulfate, followed by an actual electroplating step to thicken the copper plating.

After more washing, photoresist is applied to define the traces as well as to protect the now-plated vias, the board is etched, and a solder mask layer is applied. The boards might not be mistaken for commercial PCBs, but they’re pretty darn good, and as [Hydrogen Time] states, Process 01 is only a beginning. We expect this will be improved and streamlined as time goes by.

Fair warning, though — some steps require a fume hood to be performed safely. Luckily, we’ve got that covered. Sort of.

Continue reading “Open-Source Method Makes Possible Two-Layer PCBs With Through-Plating At Home”