How To Interface Sega Controllers, And Make Them Wireless

The Sega Genesis, or Mega Drive as it was known outside North America, was a popular console for the simple fact that Sega did what Nintendidn’t. Anachronistic marketing jokes aside, it brought fast scrolling 16-bit games to a home console platform and won many fans over the years. You may find yourself wanting to interface with the old controller hardware, and in that case, [Jon Thysell] is here to help.

[Jon] has done the work required to understand the Sega controller interface, and has shared his work on Github. The interface is an interesting one, and varies depending on the exact console and controller hardware used. The original Master System, with its D-pad and two buttons, simply uses six pins for the six switches on the controller. The 3-button Genesis pad gets a little more advanced, before things get further complicated with the state-machine-esque 6-button pad setup.

[Jon] helpfully breaks down the various interfaces, and makes it possible to interface them with Arduinos relatively easily. Sharing such work allows others to stand on the shoulders of giants and build their own projects. This nets us work such as [Danilo]’s wireless Genesis controller build. By combining the knowledge of the Sega protocol with a few off-the-shelf Arduinos and Bluetooth parts, it makes whipping up a wireless controller easy.

In this day and age, most console controllers can be readily interfaced with a PC with a variety of simple solutions – usually USB. You might feel like trying something harder though, for instance interfacing modern Nintendo controllers to a C64. Video after the break.

Continue reading “How To Interface Sega Controllers, And Make Them Wireless”

Hitchhiking To The Moon For Fun And Profit

On February 22nd, a Falcon rocket lifted off from Cape Canaveral carrying the Indonesian communications satellite Nusantara Satu. While the satellite was the primary payload for the mission, as is common on the Falcon 9, the rocket had a couple of stowaways. These secondary payloads are generally experiments or spacecraft which are too small or light to warrant a rocket of their own such as CubeSats. But despite flying in the economy seats, one of the secondary payloads on this particular launch has a date with destiny: Israel’s Beresheet, the first privately-funded mission to attempt landing on the Moon.

But unlike the Apollo missions, which took only three days to reach our nearest celestial neighbor, Beresheet is taking a considerably more leisurely course. It will take over a month for the spacecraft to reach the Moon, and it will be a few weeks after that before it finally makes a powered descent towards the Sea of Serenity, not far from where Apollo 17 landed 47 years ago. That assumes everything goes perfectly; tack a few extra weeks onto that estimate if the vehicle runs into any hiccups on the way.

At first glance, this might seem odd. If the trip only took a few days with 1960’s technology, it seems a modern rocket like the Falcon 9 should be able to make better time. But in reality, the pace is dictated by budgetary constraints on both the vehicle itself and the booster that carried it into space. While one could argue that the orbital maneuvers involved in this “scenic route” towards the Moon are more complicated than the direct trajectory employed by the manned Apollo missions, it does hold promise for a whole new class of lunar spacecraft. If you’re not in any particular hurry, and you’re trying to save some cash, your Moon mission might be better off taking the long way around.

Continue reading “Hitchhiking To The Moon For Fun And Profit”

Origami Gripper Is Great For Soft And Heavy Objects

Robotic arms are fascinating devices, capable of immense speed and precision when carrying out their tasks. They’re also capable of carrying great loads, and a full-sized industrial robot in operation at maximum pace is a sight to behold. However, while it’s simple to design grippers to move strong metal objects, picking up delicate or soft objects can be much harder. A team at MIT CSAIL have been working on a solution to this problem, which they call the Origami gripper.

The gripper is highly capable at lifting objects with complex shapes.

The gripper consists of a flexible, folding skeleton surrounded by an airtight skin. When vacuum is applied, the skeleton contracts around the object to be picked up. The gripper is capable of grasping objects sized up to 70% of its diameter, and over 100 times its weight.

Fabrication of the device involved the creation of 3D printed molds to produce the silicone rubber skeleton. Combined with precise lasercutting and advanced layering techniques, this created a part that can self-fold itself into shape under the right conditions. The structure was inspired by a “magic ball” origami design. The outer skin is remarkably simple in comparison – consisting of a regular latex balloon.

The team show off the gripper performing some impressive feats, with the robot able to pick up objects of all shapes, sizes, and weights without damage. The paper is available to read for the full story on the device. The use of vacuum for delicate gripping tasks is something we’ve seen before, too.

 

 

Forbes Says The Raspberry Pi Is Big Business

Not that it’s something the average Hackaday reader is unaware of, but the Raspberry Pi is a rather popular device. While we don’t have hard numbers to back it up (extra credit for anyone who wishes to crunch the numbers), it certainly seems a day doesn’t go by that there isn’t a Raspberry Pi story on the front page. But given that a small, cheap, relatively powerful, Linux computer was something the hacking community had dreamed of for years, it’s hardly surprising.

But how popular is the Raspberry Pi among people who don’t necessarily spend their free time reading weird black-background websites? Well, according to a recent article in Forbes, the Pi has been spotted putting in an honest days work all over the world. From factories to garbage trucks, everyone’s favorite Linux computer has come a long a way from its humble beginnings. How does it feel knowing a $35 computer has a longer resume than you do?

Unfortunately, the Forbes article doesn’t have the sort of deep technical details we’re used to around these parts. The fact that the article opens by describing the Raspberry Pi as a “stripped-down circuit board covered with metal pins and squares” should tell you all you need to know about the overlap between Forbes and Hackaday readers, but we think author [Parmy Olson] still tells an story interesting regardless.

So where has the Pi been seen punching a clock? At Sony, for a start. The consumer electronics giant has been installing Pis in several of their factories to monitor various pieces of equipment. They record everything from temperature to vibration and send that to a centralized server using an in-house developed protocol. Some of the Pis are even equipped with cameras which feed into computer vision systems to keep an eye out for anything unusual.

[Parmy] also describes how the Raspberry Pi is being used in Africa to monitor the level of trash inside of garbage bins and automatically dispatch a truck to come pick it up for collection. In Europe, they’re being used to monitor the health of fueling stations for hydrogen powered vehicles. All over the world, businesses are realizing they can build their own monitoring systems for as little as 1/10th the cost of turn-key systems; with managers occasionally paying for the diminutive Linux computers out of their own pocket.

The impact the Pi has had on the hardware world is difficult to overstate. It’s redefined the status quo for single board computers, and with the platform continuing to evolve, there’s no sign its incredible journey is slowing down anytime soon.

[Thanks to Itay for the tip.]

A 3D Printed Blooming Rose For (Next) Valentines Day

Inspiration runs on its own schedule: great ideas don’t always arrive in a timely manner. Such was the case with [Daren Schwenke]’s notion for creating a 3D-printed blooming rose for his valentine, a plan which came about on February 13. Inspired by [Jiří Praus]’s animated wireframe tulip, [Daren] figured he could make a rose from clear printed petals colored by RGB LEDs. 24 hours seemed tight but sufficient, so he diligently set to work, but – after a valiant effort – finally had to extend the schedule. It’s now more than a month later, and tweaks to the design continue, but the result is nothing short of spectacular.

We first saw a discussion of the idea over on Hack Chat, and followed as it evolved into a project on hackaday.io. There, you can read the full details of the trials and tribulations that had to be endured to make this project happen. From a printer that wouldn’t boot, through testing PLA, TPU, and nylon filament, trying a number of different approaches for springs and hinges to operate the petals, and wiring the delicate DotStar LEDs with magnet wire, you can get a really good sense of the amount of experimentation it takes to complete a project like this. If you know anyone who still thinks 3D printing is as easy as clicking a button, send them over to read the logs on this project.

An early try at forming PLA petals

What finally materialized is a terrific combination of common hacker technologies. The petals are printed flat in nylon, then formed over a hot incandescent chandelier bulb. The stem and leaves are also printed, but the side stem has a piece of magnet wire embedded in the print as a capacitive touch sensor; when the leaf is touched, the rose blossom opens or closes. Magnet wire for the LEDs and a connecting rod for the mechanics run through the main stem to the base, where a 9g servo is responsible for controlling the bloom. The whole thing is controlled, naturally, with an Arduino. To move the project along a little more quickly, [Daren] enlisted the help of another Hack Chat denizen, [Morning.Star], who did an amazing job on the software without any access to the actual hardware.

Be sure to check out the video of the rose in action, after the break.

Continue reading “A 3D Printed Blooming Rose For (Next) Valentines Day”

EBay Modules And Custom PCBs Make A Plug And Play Ham Transceiver

Many of us have fond memories of our introduction to electronics through the “200-in-1” sets that Radio Shack once sold, or even the more recent “Snap Circuits”-style kits. Most of eventually us move beyond these kits to design our circuits; still, there’s something to be said for modular designs. This complete amateur radio transceiver is a great example of that kind of plug and play construction.

The rig is the brainchild of [jmhrvy1947], who set out to build a complete transceiver using mostly eBay-sourced modules. Some custom PCBs are used, but those are simple boards that can be etched and drilled easily. The transceiver is only for continuous-wave (CW) use, which would normally mean you’d need to know Morse, but thanks to some clever modifications to open-source apps like Quisk and FLDigi, Morse can be received and sent directly from the desktop. That will no doubt raise some hackles, but we think it’s a great way to learn code. The rig is QRP, or low power, transmitting only 100 mW with the small power amp shown. Adding eBay modules can jack that up to a full 100 Watts, which also requires adding a 12-volt power supply, switchable low-pass filters, a buck-boost converter, and some bandpass filters for band selection. It ends up looking very experimental, but it works well enough to make contacts.

We really like the approach here, and the fact that the rig can be built in stages. That makes it a perfect project for our $50 Ham series, which just kicked off. Perhaps we’ll be seeing it again soon.

Continue reading “EBay Modules And Custom PCBs Make A Plug And Play Ham Transceiver”

Hackaday Links Column Banner

Hackaday Links: March 17, 2019

There’s now an official Raspberry Pi keyboard and mouse. The mouse is a mouse clad in pink and white plastic, but the Pi keyboard has some stuff going for it. It’s small, which is what you want for a Pi keyboard, and it has a built-in USB hub. Even Apple got that idea right with the first iMac keyboard. The keyboard and mouse combo are available for £22.00

A new Raspberry Pi keyboard and a commemorative 50p coin from the Royal Mint featuring the works of Stephen Hawking? Wow, Britain is tearing up the headlines recently.

Just because, here’s a Power Wheels Barbie Jeep with a 55 HP motor. Interesting things to note here is how simple this build actually is. If you look at some of the Power Wheels Racing cars, they have actual diffs on the rear axle. This build gets a ton of points for the suspension, though. Somewhere out there on the Internet, there is the concept of the perfect Power Wheels conversion. There might be a drive shaft instead of a drive chain, there might be an electrical system, and someone might have figured out how someone over the age of 12 can fit comfortably in a Power Wheels Jeep. No one has done it yet.

AI is taking away our free speech! Free speech, as you’re all aware, applies to all speech in all forms, in all venues. Except you specifically can’t yell fire in a movie theater, that’s the one exception. Now AI researchers are treading on your right to free speech, an affront to the Gadsden flag flying over our compound and the ‘no step on snek’ patch on our tactical balaclava, with a Chrome plugin. This plugin filter’s ‘toxic’ comments with AI, but there’s an unintended consequence: people want need to read what I have to say, and this will filter it out! The good news is that it doesn’t work on Hackaday because our commenting system is terrible.

This week was the 30th anniversary of the World Wide Web, first proposed on March 11, 1989 by Tim Berners-Lee. The web, and to a greater extent, the Internet, is the single most impactful invention of the last five hundred years; your overly simplistic view of world history can trace modern western hegemony and the reconnaissance to Gutenberg’s invention of the printing press, and so it will be true with the Internet. Tim’s NeXT cube, in a case behind glass at CERN, will be viewed with the same reverence as Gutenberg’s first printing press (if it had survived, but you get where I’m going with this). Five hundred years from now, the major historical artifact from the 20th century will be a NeXT cube, that was, coincidentally, made by Steve Jobs. If you want to get your hands on a NEXT cube, be prepared to pony up, but Adafruit has a great authorial for running Openstep on a virtual machine. If you want the real experience, you can pick up a NeXT keyboard and mouse relatively cheaply.

Sometimes you need an RCL box, so here’s one on Kickstarter. Yeah, it’s kind of expensive. Have you ever bought every value of inductor?