In Space, No One Can Hear You Explode: The Byford Dolphin Incident

“It wouldn’t happen that way in real life.” One of the most annoying habits of people really into the “sci” of sci-fi is nitpicking scientific inaccuracies in movies. The truth is, some things just make movies better, even if they are wrong.

What would Star Wars be without the sounds of an epic battle in space where there should be no sound? But there are plenty of other examples where things are wrong and it would have been just as easy to get them right — the direction of space debris in the movieĀ Gravity, for example. But what about the age-old trope of explosive decompression? Some movies show gross body parts flying everywhere. Others show distressed space travelers surviving in space for at least brief periods.

It turns out, dropping pressure from one atmosphere to near zero is not really good for you as you might expect. But it isn’t enough to just make you pop like some meat balloon. You are much more likely to die from a pulmonary embolism or simple suffocation. But you are a meat balloon if you experience a much greater change in pressure. How do we know? It isn’t theoretical. These things have happened in real life.

Continue reading “In Space, No One Can Hear You Explode: The Byford Dolphin Incident”

Juicing Up The Chevy Volt With Raspberry Pi

While Chevrolet’s innovative electric hybrid might officially be headed to that great big junkyard in the sky, the Volt will still live on in the hearts and minds of hackers who’d rather compare amp hour than horsepower. For a relatively low cost, a used Volt offers the automotive hacker a fascinating platform for upgrades and experimentation. One such Volt owner is [Katie Stafford], who’s recently made some considerable headway on hacking her hybrid ride.

In an ongoing series on her blog, [Katie] is documenting her efforts to add new features and functions to her Volt. While she loves the car itself, her main complaint (though this is certainly not limited to the Volt) was the lack of tactile controls. Too many functions had to be done through the touch screen for her tastes, and she yearned for the days when you could actually turn a knob to control the air conditioning. So her first goal was to outfit her thoroughly modern car with a decidedly old school user interface.

Like most new cars, whether they run on lithium or liquefied dinosaurs, the Volt makes extensive use of CAN bus to do…well, pretty much everything. Back in the day it only took a pair of wire cutters and a handful of butt splice connectors to jack into a car’s accessory systems, but today it’s done in software by sniffing the CAN system and injecting your own data. Depending on whether you’re a grease or a code monkey, this is either a nightmare or a dream come true.

Luckily [Katie] is more of the latter, so with the help of her Macchina M2, she was able to watch the data on the CAN bus as she fiddled with the car’s environmental controls. Once she knew what data needed to be on the line to do things like turn on the fan or set the desired cabin temperature, she just needed a way to trigger it on her terms. To that end, she wired a couple of buttons and a rotary encoder to the GPIO pins of a Raspberry Pi, and wrote some code that associates the physical controls with their digital counterparts.

That’s all well and good when you need to mess around with the AC, but what’s the Pi supposed to do the rest of the time? [Katie] decided a small HDMI display mounted to the dash would be a perfect way for the Raspberry Pi to do double duty as information system showing everything from battery charge to coolant temperature. It also offers up a rudimentary menu system for vehicle modifications, and includes functions which she wanted quick access to but didn’t think were necessarily worth their own physical button.

In the video after the break, [Katie] walks the viewer through these modifications, as well as some of the other neat new features of her battery powered bow tie. What she’s already managed to accomplish without having to do much more than plug some electronics into the OBD-II port is very impressive, and we can’t wait to see where it goes from here.

Today there are simply too many good electric cars for hybrids like the Chevy Volt and its swankier cousin the Cadillac ELR to remain competitive. But thanks to hackers like [Katie], we’re confident this isn’t the last we’ve seen of this important milestone in automotive history.

Continue reading “Juicing Up The Chevy Volt With Raspberry Pi”

COB LED Teardown

[Big Clive] picked up some chip-on-board (COB) LEDs meant for hydroponics that were very unusual and set out to examine them on video. Despite damaging the board almost right away, he managed to do some testing on these arrays and you can see the results in the video below. He also compares it to older LED modules.

The 144 LEDs produce a lot of light. In addition to powering the device up, he also looks at the construction of the LEDs under a magnification, comparing the older style that used tiny bond wires to make connections versus the new version soldered on the board directly.

Continue reading “COB LED Teardown”

Python Script Sends Each Speaker Its Own Sound File

When it comes to audio, the number of speakers you want is usually governed by the number of tracks or channels your signal has. One for mono, two for stereo, four for quadrophonic, five or more for surround sound and so on. But all of those speakers are essentially playing different tracks from a “single” audio signal. What if you wanted a single audio device to play eight different songs simultaneously, with each song being piped to its own speaker? That’s the job [Devon Bray] was tasked with by interdisciplinary artist [Sara Dittrich] for one of her “Giant Talking Ear” installation project. He built a device to play multiple sound files on multiple output devices using off the shelf hardware and software.

But maybe a hack like this could be useful in many applications other than just art installations. It could be used in an Escape room, where you may want the various audio streams to start in synchronicity at the same time, or as part of a DJ console, sending one stream to the speakers and another to the head phones, or a game where you have to run around a room full of speakers in the right sequence and speed to listen to a full sentence for clues.

His blog post lists links for the various pieces of hardware required, although all of it is pretty generic, and the github repository hosts the code. At the heart of the project is the Sounddevice library for python. The documentation for the library is sparse, so [Bray]’s instructions are handy. His code lets you “take a directory with .wav files named in numeric order and play them over USB sound devices attached to the host computer over and over forever, looping all files once the longest one finishes”. As a bonus, he shows how to load and play sound files automatically from an attached USB drive. This lets you swap out your playlist on the Raspberry Pi without having a use a keyboard/mouse, SSH or RDP.

Check the video after the break for a quick roundup of the project.

Continue reading “Python Script Sends Each Speaker Its Own Sound File”

FPGA Makes Digital Analog Computer

When you think of analog computing, it’s possible you don’t typically think of FPGAs. Sure, a few FPGAs will have specialized analog blocks, but usually they are digital devices. [Bruce Land] — a name well-known to Hackaday — has a post about building a digital differential analyzer using an FPGA and it is essentially an analog computer simulated on the digital fabric of an FPGA.

Whereas traditional analog computers use operational amplifiers to do mathematical integration, on the FPGA [Land] uses digital summers The devices simulate a system of differential equations, which can be nonlinear.

Continue reading “FPGA Makes Digital Analog Computer”

Be Ready To Roll With Universal Electronic Dice

There are applications you can download for your smartphone that can “roll” an arbitrary number of dice with whatever number of sides you could possibly want. It’s faster and easier than throwing physical dice around, and you don’t have to worry about any of them rolling under the couch. No matter how you look at it, it’s really a task better performed by software than hardware. All that being said, there’s something undeniably appealing about the physical aspect of die rolling when playing a game.

Luckily, [Paul Klinger] thinks he has the solution to the problem. His design combines the flexibility of software number generation with the small form factor of a physical die. The end result is a tiny gadget that can emulate anything from a 2 to 64 sided die with just 6 LEDs while remaining as easy to operate as possible. No need to tap on your smartphone screen with Cheetos-stained hands when you’ve got to make an intelligence check, just squeeze the Universal Electronic Die and off you go. Granted you’ll need to do some binary math in your head, but if you’re the kind of person playing D&D with DIY electronic dice, we think you’ll probably be able to manage.

The 3D printed case that [Paul] came up with for his digital die is very clever, though it did take him awhile to nail it down. As shown in the video after the break, it took seven iterations before he got the various features such as the integrated button “flaps” right. There’s also a printed knob to go on the central potentiometer, to make it easier to select how many sides your virtual die will have.

In terms of the electronics, the design is actually quite simple. All that lives on the custom PCB is a ATtiny1614 microcontroller, the aforementioned LEDs, and a couple of passive components. A CR2032 coin cell powers the whole operation, and it should provide enough juice for plenty of games as it’s only turned on when the user is actively “rolling”.

We’ve seen a number of very impressive electronic dice projects over the years, and it doesn’t look like the trend is slowing down anytime soon. Of course, if you absolutely must hear those physical dice rolling, we can help you with that too.

Now Hackaday Looks Great On The Small Screen Too

Most of use read and comment on Hackaday from the desktop, while we let our mind work through the perplexing compiler errors, wait for that 3D print to finish, or lay out the next PCB. But more and more people discovering Hackaday for the first time are arriving here on mobile devices, and now they’ll be greeted with a better reading experience — we’ve updated our look for smaller screens.

Yes, it may be a surprise but there are still people who don’t know about Hackaday. But between featuring your amazing hacks, and publishing the incredible original content tirelessly written by our amazing writers and editors, we’re seeing more new readers than ever. Our mission is to bring hardware hacking and the free and open sharing of information and ideas to people everywhere. So we made a responsive design that fits on the tall and narrow shards of glass attached to everyone’s hand.

There’s a generation of mobile-first hackers that we know has been headed our way — just a few years ago I lamented the change this poses to full-sized keyboards. But we think everyone should be interested in the kind of delightful self-learning that happens all the time around here and we’re happy to improve the mobile experience for that reason. Now we look great on a cellphone screen, and continue to look great on your battlestation where you have one-tab-always-open with Hackaday while laying out that circuit board, or debugging those timing issues on a sweet embedded project.