Coolest Way To Watch 3D Printing: Lights, Camera, Octolapse!

Octoprint is a household name for anyone into 3D printing and anyone regularly reading Hackaday. Described by creator Gina Häußge as “the snappy web interface for your 3D printer”, Octoprint allows you to control effectively any desktop 3D printer over the local network or Internet. It even has webcam support so you can watch your printer while it works, meaning you can finally put that video baby monitor back into the crib with Junior.

While the core functionality of Octoprint is fantastic alone, its true power is unlocked through the plugin system and the community that’s sprung up around it. With plugins, Octoprint can do everything from control RGB light strips in your printer’s enclosure to sending status messages via Discord. One particularly popular plugin that has been making the rounds lately is Octolapse by [FormerLurker]. This plugin provides a comprehensive intelligent system for creating time-lapse videos of prints.

What does that mean? Well, instead of simply taking a picture every few seconds like you’d do traditionally, Octolapse actually keeps track of the printer’s motions while its running. It can then take a picture at the opportune moment to create a number of user-selected effects. More importantly, it can even take control of the printer directly; moving the hotend away from the print before taking a picture. The effect is that the print simply “grows” out of the bed.

I thought it would be interesting to take a closer look at Octolapse and see just what it takes to create one of those awesome time-lapse videos. It turned out to be somewhat trickier than I anticipated, but the end results are so fantastic I’d say it’s a technique worth mastering.

Continue reading “Coolest Way To Watch 3D Printing: Lights, Camera, Octolapse!”

Easy-Peelzy Makes 3D Prints Stick And Not Stick

We have a friend who has always been obsessed that he didn’t invent the Weed Eater. After all, it is just some fishing line and a motor. We might feel the same way about Easy-Peelzy, which [Maker’s Muse] reviews in the video, below. The idea is very simple. Two squares of material that have magnets in them and one surface is something similar to BuildTak. You mount one square down on your print bed and then put the other square down so that it magnetically sticks. Print, and then pull the top square off and pop your print off.

Judging from the video this looks like it works very well. The price looks high until you realize the currency converts to under 20 U.S. dollars.

Continue reading “Easy-Peelzy Makes 3D Prints Stick And Not Stick”

Simple Jig Uses Electromagnet For Clean Angle Grinder Cuts

We like it when hacks are literal hack jobs, put together with what’s on hand to do a specific job. This quick and dirty angle grinder circle cutter certainly fills the bill, and makes decent cuts in sheet metal to boot.

The build starts with an unlikely source for parts – an old automotive AC compressor. The one that [Made in Poland] chose to sacrifice was particularly nasty and greasy, but after popping off the pulley, the treasure within was revealed: the large, ring-shaped clutch electromagnet. Liberated from the compressor, the electromagnet was attached to a small frame holding a pillow block. That acts as an axis for an adjustable-length arm, the other end of which holds a modified angle grinder. In use, the electromagnet is powered up by a small 12-volt power supply, fixing the jig in place on the stock. The angle grinder is traced around and makes a surprisingly clean cut. Check out the build and the tool in use in the video below.

At the time [Made in Poland] recorded the video, he noted that he did not have a plasma cutter. That appears to have changed lately, so perhaps he’ll swap out the angle grinder for plasma. And maybe he’ll motorize it for even smoother cuts.

Continue reading “Simple Jig Uses Electromagnet For Clean Angle Grinder Cuts”

Furniture And Motors Make A Strange Bedfellow

Beds! They don’t move around enough, so the young people say. They need more motors, more horsepower, more self-driving smarts – right? Honestly, we’re not sure, but if that’s the question being asked, [randofo] has the answer.

Aptly named, Bedfellow is an art project that sought to create a bed that could explore and socialise with occupants aboard. The core principle was not just to create a bed that could move under its own power, but one that could intelligently drive around and avoid obstacles, too. This is achieved through the use of ultrasonic sensors, with an Arduino Mega as the brains. The bed chooses a random direction in which to move, checking for obstacles on the way. It’s pretty basic as far as “self-driving” technology goes, but it gets the job done.

Far from being a lightweight artistic statement, the bed has some serious performance credentials. The drivetrain is a couple of 4 horsepower DC motors with speed controllers cribbed from a golf cart. These are fed through a 20:1 gear reduction to boost torque and avoid the bed moving too quickly. [Randofo] reports it can comfortably haul 12 people without slowing down, and we don’t doubt it. With that much power, your average flatback bed would be ripped to pieces, but never fear for this one – there’s plenty of heavy engineering holding it together.

It’s refreshing to see an art project executed with both elegant aesthetics and brutally powerful hardware. Sure, it might not be much good for sleeping unless you live in a loft with a concrete floor, but hey – they’re awfully popular these days. Now all it needs are some ground effects.

Wave Goodbye To Honda Asimo, A Robot That Would Wave Back

Fans of technology will recall a number of years when Honda’s humanoid robot Asimo seemed to be everywhere. In addition to its day job in a research lab, Asimo had a public relations side gig showing everyone that Honda is about more than cars and motorcycles. From trade shows to television programs, even amusement parks and concert halls, Asimo worked a busy publicity schedule. Now a retirement party may be in order, since the research project has reportedly been halted.

Asimo’s activity has tapered off in recent years so this is not a huge surprise. Honda’s official Asimo site itself hasn’t been updated in over a year. Recent humanoid robots in media are more likely to be in context of events like DARPA Robotics Challenge or from companies like Boston Dynamics. Plus the required technology has become accessible enough for us to build our own two-legged robots. So its torch has been passed on, but Asimo would be remembered as the robot who pioneered a lot of thinking into how humanoid robots would interact with flesh and blood humans. It was one of the first robots who could recognize human waving as a gesture, and wave back in return.

Many concepts developed from Asimo will live on as Honda’s research team shift focus to less humanoid form factors. We can see Honda’s new ambitions in their concept video released during CES 2018 (embedded below.) These robots are still designed to live and work alongside people, but now they are specialized to different domains and they travel on wheels. Which is actually a step closer to the Jetsons’ future, because Rosie rolls on wheels!

Continue reading “Wave Goodbye To Honda Asimo, A Robot That Would Wave Back”

Hackaday Links Column Banner

Hackaday Links: July 1, 2018

Remember when computer mice didn’t have scroll wheels? The greatest mouse of all time, the Microsoft Intellimouse Explorer 3.0, is back in production. This mouse was released in 2003, before the popularity of ‘gaming’ mice from the likes of Razer, and at the time it was the standard mouse for RTS and FPS professional gamers. After producing a few million of these mice, the molds died or the sensors were out of stock, Microsoft stopped shipping the Intellimouse Explorer 3.0, and the ones that were out in the wild slowly died. Now this fantastic mouse is back, and it’s only going to set you back $40. Believe me when I say this is one of the greatest user interface devices ever created, right up there with the Model M keyboard.

Another week, another update on building an airplane in a basement. [Peter Sripol] has basically finished the fuselage of his homebuilt ultralight with working elevator, rudder, and landing gear that looks like it might hold up.

The Pebble was one of the most successful crowdfunding campaigns ever, and now it’s dead. Pebble was bought by Fitbit for $40M, and now the Pebble servers are off, as of June 30th. Of course there are community-based projects to keep the Pebble working, notably the rebble project.

It’s time for Steam’s summer sale, and your wallet is crying. The standout deal is the Steam Link, a sort of ‘thin client for Steam’ that plugs into your TV, looks on the network for your battlestation, and allows you to play Fortnite or whatever on the big screen. The Steam Link normally sells for $50, but with the summer sale it’s two dollars and fifty cents.

Here are a few experiments in CNC joinery. [Mirock] has a CNC machine and a few pieces of wood, and explored what is possible when you want to join two boards at ninety degrees to each other. Why is this interesting? One of the joints on this simple box project consists of a circle with a hole on one board, and a pin on the other. This is basically a Knapp joint, a ‘dovetail’ of sorts that was developed in the 1860s. This was the first popular machine-made joint in woodworking, and if you ever see it on an antique, it solidly dates that piece to any time between 1870-1900. Of course, now that you can just buy a CNC router, an infinite variety of joints are possible, and [Mirock] can experiment with all sorts of combinations of pins and tails and mortises and tenons.

Raspberry Pi Zero Stepper Driver, First Of Many Modules

The Raspberry Pi in general (and the Zero W model in particular) are wonderful pieces of hardware, but they’re not entirely plug-and-play when it comes to embedded applications. The user is on the hook for things like providing a regulated power source, an OS, and being mindful of proper shutdown and ESD precautions. Still, the capabilities make it worth considering and [Alpha le ciel] has a project to make implementation easier with the Raspberry Pi Zero W Stepper Motor Module, which is itself part of a larger project plan to make the Pi Zero W into a robust building block for robotic and CNC applications.

[Alpha le ciel] is building this stepper motor module as the first of many Raspberry Pi hats meant to provide the Raspi with the hardware for robotics applications. This module, in particular, features two A4988 stepper motor drivers, a connector for a power supply or battery providing 7-20V, and a buck converter to bring that power down to the 5V needed by the Pi itself. All the relevant pins are broken out onto the Pi’s GPIO header, making this module the simplest way possible to add a pair of motors to a Pi. What does that mean? Printers or self-balancing robots, really whatever you want.

A stepper driver that conforms to the footprint of the Pi Zero is a good start, and the larger concept of creating additional modules is a worthy entry to the Hackaday Prize.