Nuts And Bolts: Keeping It Tight

It’s not much of a stretch to say that without nuts and bolts, the world would fall apart. Bolted connections are everywhere, from the frame of your DIY 3D printer to the lug nuts holding the wheels on your car. Though the penalty for failure is certainly higher in the latter than in the former, self-loosening of nuts and bolts is rarely a good thing. Engineers have come up with dozens of ways to make sure the world doesn’t fall apart, and some work better than others. Let’s explore a few of these methods and find out what works, what doesn’t work, and in the process maybe we’ll learn a little about how these fascinating fasteners work.

Continue reading “Nuts And Bolts: Keeping It Tight”

Adding Character To The C64

The venerable Commodore 64, is there anything it can’t do? Like many 1980s computer platforms, direct access to memory and peripherals makes hacking easy and fun. In particular, you’ll find serial & parallel ports are ripe for experimentation, but the Commodore has its expansion/cartridge port, too, and [Frank Buss] decided to hook it up to a two-line character LCD.

Using the expansion port for this duty is a little unconventional. Unlike the parallel port, the expansion port doesn’t have a stable output, as such. The port contains the data lines of the 6510 CPU and thus updates whenever RAM is read or written to, rather then updating in a controlled fashion like a parallel port does. However, [Frank] found a way around this – the IO1 and IO2 lines go low when certain areas of memory are written to. By combining these with latch circuitry, it’s possible to gain up to 16 parallel output lines – more than enough to drive a simple HD44780 display! It’s a testament to the flexibility of 74-series logic.
It’s all built on a C64 cartridge proto-board of [Frank]’s own design, and effort was made to ensure the LCD works with BASIC for easy experimentation. It’s a tidy mod that could easily be built into a nice enclosure and perhaps used as the basis for an 8-bit automation project. Someone’s gotta top that Amiga 2000 running the school district HVAC, after all!

Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind

In a bit of punky, steam-based tinkering, Brittish engineer [Geoff Hudspith]’s obsession for steam and passion for cycles fused into the Hudspith Steam Bicycle.

Built and improved over the past thirty years, the custom steam engine uses a petrol and kerosene mix for fuel, reaching a top speed of 32km/h and has a range of 16km on one tank of water. While in motion, the boiler is counter-balanced by the water tank on the rear as well as the flywheel, water pump, and the other components. However, [Hudspith] says he doesn’t have an easy go of it carrying the bike up the flight of stairs to his flat — as you can imagine. A steam whistle was fitted to the bike after insistence from others — and perhaps for safety’s sake as well, since it does take a bit of distance to stop the bike.

Many people have offered large sums for it — and at least one house in exchange for the bike — but [Hudspith] has held on to this one-of-a-kind steam-machine. A little more about the development of the bicycle can be read here! A video of the bike in action is waiting after the break.

Continue reading “Suffer No Substitutes — The Hudspith Steam Bicycle Is One-Of-A-Kind”

Automotive Radar And The Doppler Effect

With more and more cars driving themselves, there is an increasing demand for precise environment aware sensors. From collision avoidance to smooth driving, environmental awareness is a must have for any self-driving cars. Enter automotive radar: cool, precise and relatively cheap. Thanks to a donated automotive radar module, [Shahriar] gifts us with a “tutorial, experiment and teardown.”

Before digging into the PCB, [Shahriar] explains the theory. With just enough math for the mathmagically inclined and not too much for the math adverse, [Shahriar] goes into the details of how automotive radar is different from normal stationary radar.

Only after a brief overview of the Doppler effect, [Shahriar] digs into the PCB which reveals three die-on-PCB ASICs responsible for generating and receiving 77GHz FMCW signals coupled to a 2D array of antennas. Moreover, [Shahriar] points out the several microwave components such as “rat-race couplers” and “branchline couplers.” Additionally, [Shahriar] shows off his cool PCB rulers from SV1AFN Design Lab that he uses as a reference for these microwave components. Finally, a physical embodiment of the Doppler effect radar is demonstrated with a pair of Vivaldi horn antennas and a copper sheet.

We really like how [Shahriar] structures his video: theory, followed by a teardown and then a physical experiment to drive his lesson home. If he didn’t already have a job, we’d say he might want to consider teaching. If the video after the break isn’t enough radar for the day, we’ve got you covered.

Continue reading “Automotive Radar And The Doppler Effect”

Solar Bulldozer Gets Dirty

As the threat of climate change looms, more and more industries are starting to electrify rather than using traditional fuel sources like gasoline and diesel. It almost all cases, the efficiency gains turn out to be environmentally and economically beneficial. Obviously we have seen more electric cars on the roads, but this trend extends far beyond automobiles to things like lawn equipment, bicycles, boats, and even airplanes. The latest in this trend of electrified machines comes to us from YouTube user [J Mantzel] who has built his own solar-powered bulldozer.

The fact that this bulldozer is completely solar-powered is only the tip of the iceberg, however. The even more impressive part is that this bulldozer was built completely from scratch. The solar panel on the roof charges a set of batteries that drive the motors, and even though the bulldozer is slow it’s incredibly strong for its small size. It’s also possible for it to operate on solar alone if it’s sunny enough, which almost eliminates the need for the batteries entirely. It’s also built out of stainless steel and aluminum, which makes it mostly rust-proof.

This is an impressive build that goes along well with [J Mantzel]’s other projects, most of which center around an off-grid lifestyle. If that’s up your alley, there is a lot of inspiration to be had from his various projects. Be sure to check out the video of his bulldozer below as well. You don’t have to build an off-grid bulldozer to get started in the world of living off-the-grid, though, and it’s easy to start small with just one solar panel and a truck.

Thanks to [Darko] for the tip!

Continue reading “Solar Bulldozer Gets Dirty”

Helix Display Brings Snake Into Three Dimensions

Any time anyone finds a cool way to display in 3D — is there an uncool way? — we’re on board. Instructables user [Gelstronic]’s method involves an array of spinning props to play the game Snake in 3D.

The helix display consists of twelve props, precisely spaced and angled using 3D-printed parts, each with twelve individually addressable LEDs. Four control groups of 36 LEDs are controlled by the P8XBlade2 propeller microcontroller, and the resultant 17280 voxels per rotation are plenty to produce an identifiable image.

In order to power the LEDs, [Gelstronic] used wireless charging coils normally used for cell phones, transferring 10 W of power to the helix array.  A brushless motor keeps things spinning, while an Arduino controls speed and position via an encoder. All the links to the code used are found on the project page, but we have the video of the display in action is after the break.

Continue reading “Helix Display Brings Snake Into Three Dimensions”

Robotic Arms Controlled By Your….. Feet?

The days of the third hand’s dominance of workshops the world over is soon coming to an end. For those moments when only a third hand is not enough, a fourth is there to save the day.

Dubbed MetaLimbs and developed by a team from the [Inami Hiyama Laboratory] at the University of Tokyo and the [Graduate School of Media Design] at Keio University, the device is designed to be worn while sitting — strapped to your back like a knapsack — but use while standing stationary is possible, if perhaps a little un-intuitive. Basic motion is controlled by the position of the leg — specifically, sensors attached to the foot and knee — and flexing one’s toes actuates the robotic hand’s fingers. There’s even some haptic feedback built-in to assist anyone who isn’t used to using their legs as arms.

The team touts the option of customizeable hands, though a soldering iron attachment may not be as precise as needed at this stage. Still, it would be nice to be able to chug your coffee without interrupting your work.

Continue reading “Robotic Arms Controlled By Your….. Feet?”