Vending Coins For Your Vending Machine

Anyone who has worked in an office with a vending machine knows this problem well: someone wants a snack or a drink from the vending machine, but doesn’t have any small change. So, they proceed to walk around the office trying to find someone to make some change for them. It’s a hassle, and a surprisingly common one. Sure, a lot of vending machines now accept credit cards, but they’re still in the minority.

This was the problem facing Belgium-based automation company November Five. As automation and IoT specialists, their first thought was to hack the vending machine itself. But, unfortunately, they didn’t own it; as many of you know, vending machines are generally owned by the distributor. So, they needed a solution that allowed their employees access to the vending machine, without actually modifying the vending machine itself.

The solution they came up with was to attach an RFID-activated coin dispenser to the vending machine. Everyone at the company already has an RFID badge for opening doors and such, so the system wouldn’t add any burden to the employees. And keeping track of how many coins each employee used was a simple task of logging requests.

Continue reading “Vending Coins For Your Vending Machine”

Parent To The Power Wheels Rescue

If the [realjohnnybravo] is the one from the show, it appears he finally managed to get a girlfriend, marry her, and produce at least one son. As the old schoolyard rhyme goes, first comes love, then comes marriage, then comes filling the whole *!$&# backyard with brightly colored plastic garbage. One of these items, a Power Wheels quad bike,  suffered a blow from planned obsolescence leaving behind a traumatized child. [realjohnnybravo] decided to fix it.

He made frequent mention of how one could go to a store and purchase replacement gears for the toy. Perhaps it’s a German thing. Regardless, he shows experience with internet comments by justifying his adventure in gear manufacturing with, paraphrased, “I’m having fun and learning so back off you pedantic jerks.”

Resin casting is great, and is often overlooked vs 3D printing. He purchased some hardware store RTV silicone and some slow-cure resin. The faster cure resin would get too hot with this much volume and potentially burn.

Materials procured he took apart both gearboxes from the machine. He first made a silicone mold of the broken parts (from the good copies out of the working gearbox) and removed the master. Without a vacuum or pressure casting chamber, the molds came out a little rough and bubbly, but it’s nothing some work with a carpet knife can’t fix. For big gears like this it hardly matters. Next he poured the two part resin into the molds and waited.

After some finishing with regular woodworking tools the parts fit right into the voids in the defective gearbox. His son can once again happily whir around the lawn, until the batteries die anyway.

Hackaday Prize Entry: You Have No Free Will

The concept of free will is the perfect example of human arrogance ever conceived. If a gas molecule collides with another gas molecule, simple physics can determine the momentum of the first gas molecule, the kinetic energy imparted to the second gas molecule, and the resulting trajectories of both molecule. Chemical reactions are likewise easy to calculate. Scale a system up to something the size of a human brain, and you have a perfectly predictable system. It’s complex, yes, but predetermined since the beginning of time. You are without moral agency, or any independent thought of your own. You are merely a passive observer in a vast, cold, uncaring universe. You are cursed with the awareness of this fact.

For his Hackaday Prize project, [Patrick Glover] is proving we don’t have free will. Will he win the Hackaday Prize? That’s up for the cold machinations of fate to decide.

In the 1980s, psychologist [Benjamin Libet] performed an experiment. He connected an EEG to a subject’s arm and head, and asked them to flex their wrist whenever they felt like it. It turns out, an area of your brain generates an EEG potential a significant time before the subject is aware of deciding to flex their wrist. This is a foundational study in the physiology of consciousness, and direct evidence an IRB is okay with giving subjects an existential crisis.

[Patrick] is in the process of replicating the [Libet] study. Unlike the 1980s experiment, [Patrick] has access to handy Arduino shields and MATLAB, making the experimental setup very easy. The results, of course, will be the subject of philosophical debates continuing until the heat death of the universe, but we already knew that, didn’t we?

Check out the comments below for objectors predictably saying they do, in fact, have free will.

NFL To Experiment With Chipped Balls

NFL preseason starts in just a few weeks. This year, it will come with a bit of a technological upgrade. The league plans to experiment with custom microchip-equipped footballs. Unfortunately, this move has nothing to do with policing under-inflation — the idea is to verify through hard data that a narrower set of goal posts would mean fewer successful kicking plays.

Why? Kicking plays across the league have been more accurate than ever in the last couple of seasons, and the NFL would like things to be a bit more competitive. Just last year, extra point kicks were moved back from the 20 to the 33-yard line. Kickers already use brand-new balls that are harder and more slippery than the field balls, so narrowing the goal from the standard 18’6″ width is the natural next step. A corresponding pair of sensors in the uprights will reveal exactly how close the ball is when it passes between them.

The chips will only be in K-balls, and only in those kicked during the 2016 preseason. If all goes well, the league may continue their use in Thursday night games this season. We couldn’t find any detail on these custom-made chips, but assume that it’s some kind of transmitter/receiver pair. Let the speculation begin.

Main image: Field goal attempt during the Fog Bowl via Sports Illustrated

[via Gizmodo]

Arduino Absentmindedly Blows Bubbles

If you ever wanted to make an occasion festive with bubbles, [Sandeep_UNO] may have the project for you. As you can see in the video below (and, yes, it should have the phone rotated and it doesn’t), his Arduino uses a servo motor to dip a bubble wand into soap solution and then pulls it in front of a fan. The entire operation repeats over and over again.

There’s not a lot of detail and no code that we could find, but honestly, if you know how to drive a servo motor from an Arduino, the rest is pretty easy to figure out. Look closely at the motion of the robot. What is often accomplished with a spinning wheel of bubble wands and a constant fan becomes much more interesting when applied intermittently. The lazy cadence is what you expect to see from human operation and that adds something to the effect.

We’ve seen faster bubble blowers, but they were not so simple. We’ve even looked at other bubble-blowing robots. If you want to find out more about servo motors in general, our own [Richard Bauguley] has what you need to know.

Continue reading “Arduino Absentmindedly Blows Bubbles”

Modest Motor Has Revolutionary Applications

Satellites make many of our everyday activities possible, and the technology continues to improve by leaps and bounds. A prototype, recently completed by [Arda Tüysüz]’s team at ETH Zürich’s Power Electronics Systems Lab in collaboration with its Celeroton spinoff, aims to improve satellite attitude positioning with a high speed, magnetically levitated motor.

Beginning as a doctoral thesis work led by [Tüysüz], the motor builds on existing technologies, but has been arranged into a new application — with great effect. Currently, the maneuvering motors on board satellites are operated at a low rpm to reduce wear, must be sealed in a low-nitrogen environment to prevent rusting of the components, and the microvibrations induced by the ball-bearings in the motors reduces the positioning accuracy. With one felling swoop, this new prototype motor overcomes all of those problems.

Continue reading “Modest Motor Has Revolutionary Applications”

Hacklet 118 – Infrared And Universal Remote Controls

The first remote control for a TV was the Zenith Space Command back in the 1950’s. Space Command used sounds at ultrasonic frequencies to control the set. It wasn’t until the 1980’s and the Viewstar cable box that infrared entered the picture. Remote controls spread like wildfire. It wasn’t long before every piece of consumer electronics had one. Coffee tables were littered with the devices. It didn’t take long for universal remotes to hit the scene. [Woz] himself worked on the CL9 Core device, back in 1987. Even in today’s world of smart TV’s and the internet of things, universal remotes are still a big item. Hackers, makers, and engineers are always trying to build a device that works better for them. This week’s Hacklet is about some of the best universal and IR remote projects on Hackaday.io!

smoteWe start with [Harikrishna] and zmote. Zmote is an open source WiFi enabled, infrared,  360° remote control. That’s a mouthful. It might be easier to say it’s an ESP8266 and some IR LEDs. An ESP-01 module connects the device to WiFi and provides the 32-bit processor which runs the show. Learning functionality comes courtesy of a TSOP1738 modulated infrared receiver. The beauty of the Zmote is in the software. REST and MQTT connectivity are available. Everything is MIT licensed, and all the code is available on Github.

 

easton

Next up is [Benjamin Kenobi] with TV Remote Control, Limited. Not everyone can operate the tiny buttons on a modern remote. [Benjamin] built this device for Easton, a special kid with a disability that impairs his motor skills. The 3D printed case holds two buttons – one for power, and one to change the channel. An Arduino Nano running [Ken Shirriff’s] IR library is the brains of the operation. The IR signal timing is hard coded for simplicity. One problem [Ben] ran into was the Nano’s high current draw, even in sleep mode. Batteries wouldn’t last a week. A simple diode circuit with a reed relay keeps the Nano shut down until Easton presses a button.

 

openirNext we have [Nevyn] with OpenIR – Infrared Remote Control. A dead DSLR remote shutter release was all the motivation [Nevyn] needed to start work on his own universal remote control. OpenIR can be connected to (and controlled by) just about anything with a UART – a PC via an FTDI cable, a Bluetooth module, even an ESP8266. The module can be programmed by entering pulse length data through a custom Windows application. The Windows app even allows the user to view the pulses graphically, like a scope. The data is stored on an EEPROM on OpenIR’s PCB. Once programmed, the OpenIR board is ready to control the world.

onebuttonFinally, we have [facelessloser] with One button TV remote. This project may be the simplest open source remote control this side of TV-B-GONE. He wanted to build a simple remote control for his young daughter to scan between the various kids channels. A simple toggle switch turns the device on, and one button performs the rest of the magic. [Facelessloser] wanted to “move up” from an Arduino to an ATtiny85. This project became part of his ATtiny education. A custom PCB from OSH Park ties things together. A simple black project box keeps the electronics safe from tiny fingers – at least until she’s old enough to use a screwdriver.

If you want to see more IR and universal remote��projects, check out our new infrared and universal remote projects list. See a project I might have missed? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!