A sliced digital file of a marker light enclosure. Background is a white and grey grid and object itself is a series of print path lines in red, orange, and green.

3D Printing Hard-To-Find Vintage Vehicle Parts

When I was growing up, my dad and I restored classic cars. Combing junkyards for the pieces we needed was a mixture of interesting and frustrating since there was always something you couldn’t find no matter how long you looked. [Emily Velasco] was frustrated by the high price of parts even when she was able to find them, so she decided to print them herself. She wrote an excellent tutorial about designing and 3D printing replica parts if you find yourself in a similar situation.

All four marker lights on [Velasco]’s 1982 Toyota pickup were on their way to plastic dust, and a full set would run her $160. Instead of shelling out a ton of cash for some tiny parts, she set out to replicate the marker lamps with her 3D printer. Using a cheap marker lamp replacement for a more popular model of pickup as a template, she was able to replace her marker lamps at a fraction of the cost of the options she found online. Continue reading “3D Printing Hard-To-Find Vintage Vehicle Parts”

Rubber Band Behemoth Winds Its Way Toward World Record

Egged on by adoring fans who demanded more aircraft videos, [ProjectAir] has decided to break the world record for rubber band powered aircraft… despite having never built a rubber band powered aircraft. Why rubber band power?

Before little two stroke motors became affordable, and long before electric motors and batteries were remotely possible, there weren’t a lot of options for powering your model aircraft. One technology that really took off was that of rubber band power. By winding a rubber band, it could store enough energy to turn a propeller for a short duration. With a 10 foot model taking the current world record, as you can see in the video below the break [ProjectAir] decided to see if he could beat it.

Rubber Band Powered Free Flight c1915 By Unknown author

Starting with a successful free flight aircraft made of foam board, [ProjectAir] simply scaled it up to an eleven foot wing- one foot larger than the ten foot world record holder. Since there were now eight rubber band motors, a mechanism was created to release the propellers in sync, but this was problematic. Eventually a slightly heavy but solid solution was found.

[ProjectAir] did more testing, more problem solving, and through rapid iterations, he eventually was able to have a successful flight under radio control. His personal goal of a 12 second flight was exceeded, and then Guinness called! They’re interested in certifying his attempt as long as his plane can fly for at least 30 seconds- almost double his current ability. What will he do? Check the video, too, for [ProjectAir]’s challenge to the community to join him in trying to beat the world record. Sounds like fun!

Aside from powering world record attempting radio controlled aircraft, did you know that you can build a rubber band powered refrigerator? It’s true!

Continue reading “Rubber Band Behemoth Winds Its Way Toward World Record”

Intranasal Vaccines: A Potential Off-Ramp For Coronavirus Pandemics

An interesting and also annoying aspect about the human immune system is that it is not a neat, centralized system where you input an antigen pattern in one spot and suddenly every T and B lymphocyte in the body knows how to target an intruder. Generally, immunity stays confined to specific areas, such as the vascular and lymph system, as well as the intestinal and mucosal (nasal) parts of the body.

The result of this is that specific types of vaccines have a different effect, as is demonstrated quite succinctly with the polio vaccines. The main difference between the oral polio vaccine (OPV) and inactivated vaccine (injected polio vaccine, or IPV) is that the former uses a weakened virus that induces strong immunity in the intestines, something that the latter does not. The effect of this is that while both protect the individual, it does not affect the fecal-oral infection route of the polio virus and thus the community spread.

The best outcome for a vaccine is when it both protects the individual, while also preventing further infections as part of so-called sterilizing immunity. This latter property is what makes the OPV vaccine so attractive, as it prevents community spread, while IPV is sufficient later on, as part of routine vaccinations. The decision to use a vaccine like the OPV versus the IPV is one of the ways doctors can tune a population’s protection against a disease.

This is where the current batch of commonly used SARS-CoV-2 vaccines are showing a major issue, as they do not provide significant immunity in the nasal passage’s mucosal tissues, even though this is where the virus initially infects a host, as well as where it replicates and infects others from. Here intranasal vaccines may achieve what OPV did for polio.

Continue reading “Intranasal Vaccines: A Potential Off-Ramp For Coronavirus Pandemics”

IBM Made A MIPS Laptop. Will It Make You WinCE?

We’re used to our laptop computers here in 2022 being ultra-portable, super-powerful, and with impressively long battery lives. It’s easy to forget then that there was a time when from those three features the laptop user could usually expect only one of them in their device. Powerful laptops were the size of paving slabs and had battery lives measured in minutes, while anything small usually had disappointing performance or yet again a minuscule power budget.

In the late 1990s manufacturers saw a way out of this in Microsoft’s Windows CE, which would run on modest hardware without drinking power. Several devices made it to market, among them one from IBM which [OldVCR] has taken a look at. It makes for an interesting trip down one of those dead-end side roads in computing history.

In the box bought through an online auction is a tiny laptop that screams IBM, we’d identify it as a ThinkPad immediately if it wasn’t for that brand being absent. This is an IBM WorkPad, a baby sibling of the ThinkPad line intended as a companion device. This one has a reduced spec screen and an NEC MIPS processor, with Windows CE on a ROM SODIMM accessible through a cover on the underside. For us in 2022 MIPS processors based on the open-sourced MIPS ISA are found in low-end webcams and routers, but back then it was a real contender. The article goes into some detail on the various families of chips from that time, which is worth a read in itself.

We remember these laptops, and while the IBM one was unaffordable there was a COMPAQ competitor which did seem tempting for on-the-road work. They failed to make an impact due to being marketed as a high-end executive’s toy rather than a mass-market computer, and they were seen off as “real” laptops became more affordable. A second-hand HP Omnibook 800 did the ultra-portable job on this bench instead.

The industry had various attempts at cracking this market, most notably with the netbooks which appeared a few years after the WorkPad was produced. It was left to Google to reinvent the ultra-portable non-Intel laptop as an internet appliance with their Chromebooks before they would become a mass-market device, but the WorkPad remains a tantalizing glimpse of what might have been.

Windows CE occasionally makes an appearance here, and yes, it runs DOOM.

Infinite Axis Printing On The Ender 3

It’s taken years to perfect them, but desktop 3D printers that uses a conveyor belt instead of a traditional build plate to provide a theoretically infinite build volume are now finally on the market. Unfortunately, they command a considerable premium. Even the offering from Creality, a company known best for their budget printers, costs $1,000 USD.

But if you’re willing to put in the effort, [Adam Fasnacht] thinks he might have the solution. His open source modification for the Ender 3 Pro turns the affordable printer into a angular workhorse. We wouldn’t necessarily call it cheap; in addition to the printer’s base price of $240 you’ll need to source $200 to $300 of components, plus the cost of the plastic to print out the 24 components necessary to complete the conversion. But it’s still pretty competitive with what’s on the market. Continue reading “Infinite Axis Printing On The Ender 3”

Simple Internet Radio Transplant

While we have a definite sweet spot in our hearts for analog radio, there are times that just call for a digital upgrade. One of the downsides that can come with this upgrade is complexity. For example, the more software-minded among us might base their build on the Music Player Daemon, and use a web interface for control. But that’s not everyone’s idea of a good time, and particularly an older user of your gizmos might really appreciate a simple, tactile user interface. That’s the situation [Blake Hannaford] was in, while building an Internet powered radio for someone else.

The solution was to take a familiar analog radio, the Tivoli Audio Model One, and give it a digital makeover. Now before you get worked up about wrecking the purity of a classic radio, note that the Model One is a faux-classic, made in 2000. No antiques were harmed in the making of this hack, and the exterior is essentially left stock — the only visible modification being the taped-on tuner label.

Inside it’s a Raspberry Pi Zero, the Adafruit Audio Bonnet, and a 3D printed bracket to tie a variable potentiometer to the tuning knob. The original volume knob and speaker are re-used. As [Blake] says, sometimes all you need is tuning and volume. Plus, re-using the speaker means that the whole unit still sounds great. Sometimes simple really is best.

While you’re here, check out our previous coverage of these style hacks and conversions!

The Inner Machinations Of The Arduino Are An Enigma

Arduinos have been the microcontroller platform of choice for nearly two decades now, essentially abstracting away a lot of the setup and lower-level functions of small microcontrollers in favor of sensible IDEs and ease-of-use. This has opened up affordable microcontrollers to people who might not be willing to spend hours or days buried in datasheets, but it has also obscured some of those useful lower-level functions. But if you want to dig into them, they’re still working underneath everything as [Jim] shows us in this last of a series of posts about interrupts.

For this how-to, [Jim] is decoding linear timecodes (LTCs) at various speeds. This data is usually transmitted as audio, so the response from the microcontroller needs to be quick. To make sure the data is decoded properly, the first thing to set up is edge detection on the incoming signal. Since this is about using interrupts specifically, a single pin on the Arduino is dedicated to triggering an interrupt on these edges. The rest of the project involves setting up an interrupt service routine, detecting the clock signal, and then doing all of the processing necessary to display the received LTC on a small screen.

The project page goes into great detail about all of this, including all of the math that needs to be done to get it set up correctly. As far as general use of interrupts goes, it’s an excellent primer for using the lower-level functionality of these microcontrollers. And, if you’d like to see the other two projects preceding this one they can be found on the first feature about precision and accuracy, and the second feature about bitbanging the protocol itself.