Top left of image shows a picture of a purplish-grey sea cucumber. Above the cucumber is the word "bio-inspiration." Arrows come from the cucumber to anthropomorphized cartoons of it saying "rigid" at the top with a cartoon sea cucumber standing straight up with spikes and the arrow captioned "soft" pointing down showing a crawling sea cucumber that looks more like a slug. To the right of the cucumber images is a set of three images stacked top to bottom. The top image is of a silver sphere with a zoomed-in atomic diagram with aligned magnetic poles next to it saying "solid state." The middle image shows arrows going up and down next to a snowflake and an artistic rendering of magnetic fields labeled "transition." The bottom image of this section shows a reddish sphere next to a zoomed-in atomic diagram where the magnetic poles are not aligned labeled "liquid state."

Phase Change Materials For Flexible And Strong Robots

Shape shifters have long been the stuff of speculative fiction, but researchers in China have developed a magnetoactive phase transitional matter (MPTM) that makes Odo slipping through an air vent that much more believable.

Soft robots can squeeze into small spaces or change shape as needed, but many of these systems aren’t as strong as their more mechanically rigid siblings. Inspired by the sea cucumber’s ability to manipulate its rigidity, this new MPTM can be inductively heated to a molten state to change shape as well as encapsulate or release materials. The neodymium-iron-boron (NdFeB) microparticles suspended in gallium will then return to solid form once cooled.

An image of a LEGO minifig behind bars. It moves toward the bars, melts, and is reconstituted on the other side after solidifying in a mold.

Applications in drug delivery, foreign object removal, and smart soldering (video after the break) probably have more real world impact than the LEGO minifig T1000 impersonation, despite how cool that looks. While a pick-and-place can do better soldering work on a factory line, there might be repair situations where a magnetically-controlled solder system could come in handy.

We’ve seen earlier work with liquid robots using gallium and bio-electronic hybrids also portending the squishy future of robotics.

Continue reading “Phase Change Materials For Flexible And Strong Robots”

Digital Video From The Amiga’s DB23 Socket

Back in the days of 16-bit home computers, the one to have if your interests extended to graphics was the Commodore Amiga. It had high resolutions for the time in an impressive number of colours, and thanks to its unique video circuitry, it could produce genlocked broadcast-quality video. Here in 2023 though, it’s all a little analogue. What’s needed is digital video, and in that, [c0pperdragon] has our backs with the latest in a line of Amiga video hacks. This one takes the 12-bit parallel digital colour that would normally go to the Amiga’s DAC, and brings it out into the world through rarely-used pins on the 23-pin video connector.

This follows on from a previous [c0pperdragon] project in which a Raspberry Pi Zero was used to transform the digital video into HDMI. This isn’t a hack for the faint-hearted though, as it involves extensive modification of your treasured Amiga board.

It is of course perfectly possible to generate HDMI from an Amiga by using an external converter box from the analogue video output, of the type which can be bought for a few dollars from online vendors. What this type of hack gives over the cheap approach is low latency, something highly prized by gamers. We’re not sure we’re ready to start hacking apart our Amigas, but we can see the appeal for some enthusiasts.

Tiny PCB Banishes Soldering Fumes, Automatically

A fan to remove fumes is a handy thing to have when soldering, even better is a fan furnished with a filter. Better still is a fan that activates only when the iron is in use, turning off when the iron is in its stand. Now that’s handy!

[Petteri Aimonen] made exactly such a device when he noticed his JBC BT-2BWA soldering station could detect when the iron is removed from its stand, and indicate its operating mode via status LEDs. Broadly speaking, when the iron is removed from its cradle the green “in use” LED is on. By turning the fan on whenever that LED is lit (and turning it off when it becomes unlit), fume extraction gets a little more elegant and efficient.

Instead of tapping directly into the soldering station’s hardware to detect the LED’s state, [Petteri] went for a completely noninvasive solution that made good use of a few spare parts and a small bit of copper-clad board. The PCB is nothing more than piece of copper-clad board with lands scratched out with a hobby knife.

This tiny board sits atop the soldering station, parking a photodiode directly above the “in use” LED. The circuit is a simple comparator whose output controls fan power via a MOSFET, and a top-facing LED provides as a duplicate “in use” indicator, since the original is hidden under the tiny board.

Even for one-off designs like this, creating a PCB layout in an EDA program like KiCad is still worth doing because one can use it to scratch out lands on a copper-clad board, a technique with similarities to Manhattan-style circuit construction.

DIY Mini Fridge Is Pure Brilliance In Foam

There’s nothing more pleasing on a hot day than an ice-cold beverage. While the vast majority of us have a fridge in the kitchen, sometimes it’s desirable to have a further fridge in the lab, games room, or workshop. To that end, you may find value in this ultra-cheap, low-cost DIY fridge build from [Handy_Bear].

Like many tiny fridge builds, this design eschews complex gas-cycle refrigeration techniques for simple Peltier modules. These are devices that have one cold side and one hot side, because they move heat when electricity is applied. This build uses a Peltier module fitted with a fan to better shift away heat from the hot side, improving the module’s cooling ability.

The “fridge” itself is assembled out of thick XPS insulation foam. A hot wire cutter was used to cut several slabs which were then assembled using hot glue. The Peltier module is installed on the back, at the top of the fridge. Thus, air which is cooled in this area will then travel down through the rest of the fridge’s cavity. [Handy_Bear] also goes over how to produce a working hinge and a gasket for the door, which helps with ease-of-use and efficiency. As a nice touch, a set of 12V LED lights are also installed inside, which light when the door is open. Just like the real thing!

The final build is noisy, slow to cool down, and it uses 60 watts of power to cool down just two regulation-sized sodas. Notably, you could fit two standard NATO smoke grenades in the same space, as they’re almost-identically sized (ask us how we know). However, smoke grenades don’t usually need to be refrigerated.

None of that means it isn’t fun though! Plus, [Handy_Bear] notes that adding a second Peltier would greatly aid the fridge’s ability to quickly chill your grenades sodas. You might even like to explore the use of special fan designs to make the fridge even quieter! Video after the break.

Continue reading “DIY Mini Fridge Is Pure Brilliance In Foam”

A black chandelier that looks somewhat like a fern frond. It has four lights arranged roughly in a circle around the curly end and two clustered near the tail. It is mounted on a dark wood panel ceiling.

Put A Constellation In Your Dining Room

We love lamps here at Hackaday, especially if they imitate natural light sources. [Scott McIndoe] used his love of lamps to fashion a chandelier replicating his favorite constellation, the Southern Cross.

Starting with the Southern Cross’s four major stars and the pointers of Alpha and Beta Centauri, [McIndoe] sketched out a breaking wave form between the six stars to form the spine of this light source. By using smart bulbs for each of the six star positions, he was able to set a scene that replicates the color and relative brightness of each star for that extra astronomical touch.

The top and bottom of the chandelier is laser cut from 3 mm plywood and fitted together using glue and finger joints while the sides are a wood veneer. The entire piece was sanded and coated with a bit of filler before painting. Mounting is accomplished using three eye hooks mounted on the top side of the chandelier.

If you want more celestial lamps, check out [McIndoe]’s previously-featured analemma chandelier or this lithophane moon lamp.

A Low Budget DIY Vibrotactile Stimulator For Experimental CRS

Modern techniques of Coordinated Reset Stimulation (CRS), which is usually administered with invasive deep brain stimulation, can have a miraculous effect on those suffering from Parkinson’s disease. However, the CRS technique can also apparently be administered via so-called vibrotactile CRS (vCRS) which essentially means vibrating certain nerve endings corresponding to brain regions that have a large cortical representation.

An example is vibrating the tips of the fingers using special gloves. This is a medical technique and as such is governed by the FDA. With ongoing trials, patients all around the world will simply have to wait. [HackyDev] has been working with a group of people on developing an open source vCRS glove.

This neuromodulation technique seems so promising, that this upfront effort by hackers around the world is simply a joy to see. Patents be dammed; we can work around them. Interested parties can follow the (very long, tricky-to-follow) thread here.

The hardware [HackyDev] put together uses a nodeMCU as the controller, driving eight motor coils via MOSFETS. The finger-mounted actuators are constructed by ripping the electromagnet out of a relay and mounting it in a 3D printed frame, with a magnet suspended on a spring. This part is mounted on each finger. The nodeMCU presents a simple web form that enables the configuration of the pulse parameters.

A permanent magnet is housed in the spring’s top section

The way the gloves appear to work is due to the way the body perceives sensory input, with a massive bias towards the hands and mouth region, referred to as the cortical homunculus. Each finger has an individual haptic element, which is actuated in a specific sequence with a carefully formed pulse at approx. 250 Hz.

This appears to activate similar in-brain effects as traditional (and invasive) DBS therapy by effectively de-synchronizing certain over-synchronized brain pathways and alleviating the overactive ß-wave activity in the brain. And this calms the tremors as well as many other PD symptoms. It’s all very exciting stuff, and we’ll be following this story closely.

For more on the backstory check out the 2017 paper by Peter A. Tass, as well as this later one, and this one. We’ve seen some recent success with diagnosing or at least detecting PD, by smell as well as via audio, so the future might look a little brighter for quite a number of people.

LED Filament Lamp Is Subtle, Warm, And Elegant

Hackers have loved LEDs from day one, back when they gave us little more than a dim spot of colored light in the darkness. These days, they’re big, bright, and beautiful, and can be used to create some exquisite lighting fixtures. This lamp build from [lonesoulsurfer] is a great example of that.

The build uses LED filaments, which have grown popular for the way they emulate old-fashioned Edison filament bulbs. The filaments consist of tiny LEDs all in a row, covered in flexible material to allow them to act like a filament. They’ll happily power up from just 3V, and deliver great brightness and lovely warm light.

[lonesoulsurfer] bent up an elegant oval-shaped frame for the lamp, using common brass tubing. In the middle of the are two lengths of white plastic tubing with the LEDs inside. The brass is painted black, with the LEDs providing two bright glowing lines on the arms of the oval. The base is then made out of wood and copper tubing, providing a pop of material contrast to the rest of the frame.

It’s an elegant build, and one you can readily recreate at home. If you do so with enough finesse, it will stunt on anything Ikea or (Australian) Kmart has put out in the last decade, in both material quality and uniqueness. We do love a good lamp build around these parts, after all. Video after the break.

Continue reading “LED Filament Lamp Is Subtle, Warm, And Elegant”