An In-Depth Look At Dexter, The Robotic Arm

Dexter, a really great robot arm project, just won top honors in the 2018 Hackaday Prize, and walked away with $50,000 toward continuing their project. As a hat tip to Hackaday and the community, Haddington Dynamics, the company behind Dexter, agreed to open-source their newest version of Dexter as well. As James Newton said when accepting the trophy during the award ceremony, “because of your faith in us, because of this award, we have been moved to open-source the next generation of Dexter.” Some very clever work went into producing Dexter, and we can’t wait to see what further refinements have been made!

Dexter isn’t the only robotic arm in town, by any means. But in terms of hobbyist-level robotics, it’s by far the most complete robot arm that we’ve seen, and it includes a couple of design features that make both its positional accuracy and overall usability stand out above the rest. This is a robot arm with many of the bells and whistles of a hundred-thousand dollar robot, but on a couple-thousand dollar budget. Continue reading “An In-Depth Look At Dexter, The Robotic Arm”

It Happened At Supercon: Six Days Of Fun In A Three Day Con

A weekend for people who love hardware, by people who love hardware. It’s a simple recipe and it makes a delicious event that we call the Hackaday Superconference. If you made it to Pasadena last weekend, I’m sure going back to work on Monday was difficult after three days of far too little sleep and way too much fun. (It was for me.) If you didn’t make it to the con, set a reminder for July 1st to start watching for next year’s early bird tickets. Don’t believe me? Okay, let’s step through the hype of a weekend we’ll all remember.

Check out the recap video above and then join me after the break for a photo-heavy expose of the weekend’s highlights.

Continue reading “It Happened At Supercon: Six Days Of Fun In A Three Day Con”

Green LED Means GO For Supercon Badge Hacking

In addition to great speakers and enlightening workshops at Supercon, we have an area set aside for attendees to hack on their conference badges. There is no prerequisite beyond having a badge and a willingness to get hands-on. From hardware beginners to professional embedded system developers, we welcome all skill levels!

The image above is a free-form LED light sculpture by [4C1dBurn], who had just learned to solder and this is how a new skill was put into practice. In the background is the badge hacking arena: 7 tables set up in a row with 6 seats per table. The doors opened at 9AM and almost all the seats were filled by 9:30AM. There’s a constant flow as people leave to attend a talk or workshop, and others arrive to fill the vacancy.

In our hardware hacking overview, we shared an example of an LED array controlled by badge using shift registers. Several badge hackers built on top of this idea. [X] is making a version for surface mount LEDs, and [macegr]’s variant incorporated an USB-to-serial adapter on board to reduce wire clutter. He calls it a “quality of life improvement” and we think it’s brilliant.

Any reduction in wire clutter can only help with the many glorious explosions of wires scattered about. This particular example is a work-in-progress by [carfucar] turning a badge into wireless remote for a large array of WS2812B LED strips.

Heeding our call to action in the hardware hacking overview, there are at least two efforts underway to add wireless communication capability to the badge. [Preston] is making good progress teaching a badge to talk to an AVR-IoT module. [morgan] and [Ben] are building a mesh network using ESP32s. If it gets up and running, they’ve brought a bunch of ESP32s to add more nodes to their network.

For the talks currently on stage, go to the Supercon event page and click “Livestream” in the upper right corner for the official live stream. Badge hacking will continue all through Supercon, parts of which will be visible through unofficial livestream of badge hacking from attendees like [X]’s robot [Sharon].

Dexter Robotic Arm Wins The 2018 Hackaday Prize

Dexter, an open-source, high-precision, trainable robotic arm has just been named the Grand Prize winner of the 2018 Hackaday Prize. The award for claiming the top place in this nine-month global engineering initiative is $50,000. Four other top winners were also named during this evening’s Hackaday Prize Ceremony, held during the Hackaday Superconference in Pasadena, California.

This year’s Hackaday Prize featured challenges with five different themes. Entrants were asked to show their greatest Open Hardware Design, to build a Robotics Module, to design a Power Harvesting Module, to envision a Human Computer Interface, or to invent a new Musical Instrument. Out of 100 finalists, the top five are covered below. Over $200,000 in cash prizes have been distributed as part of this year’s initiative where thousands of hardware hackers, makers and artists compete to build a better future.

Dexter: High Precision Robotic Arm

Dexter is the Grand Prize winner of the 2018 Hackaday Prize. This remarkable robotic arm design brings many aspects of high-end automation to an open source design which you can utilize and adapt for your own needs. In addition to impressive precision, the design is trainable — you can move the joints of the arm and record the motion for playback.

The image here shows position data from one arm being moved by a human, controlling another arm in real time. Each joint utilizes a clever encoder design made up of a wheel with openings for UV sensors. Sensing is more than merely “on/off”. It tracks the change in light intensity through each opening for even greater granularity. The parallel nature of an FPGA is used to process this positioning data in real time.

Hack a $35 Wearable to Build Mental Health Devices

Manufacturing custom electronics is a tricky, costly, and time-consuming process. What if you could sidestep most of that by starting with a powerful, proven consumer good that is modified to your specifications? This project takes existing fitness trackers and customizes the hardware and software to become sensor suites for mental health research. Dig into this one and see how they can help patients become aware of unconscious behaviors (like trichotillomania which is compulsive hair pulling) and change them over time.

Portal Point Generator

This project focuses on an alternative power source for times when traditional infrastructure is not functioning or simply not available. You may be familiar with generators made using DC motors. The Portal Point Generator replicates that simplicity, but goes beyond with instructions for building the generator itself for far greater efficiency. A winding jig is used to make the coils which are placed inside of the 3D printed generator parts along with permanent magnets to complete the build. Here you can see it in testing as a wind generator in Antarctica, but it is easily adapted to other applications like using water wheels.

EmotiGlass

There is a body of research that suggest a link between cardiac cycle and anxiety-producing visuals; you may have a different emotional reaction to the things you see based on what part of a heartbeat is occurring when your brain process information from your eyes. This could have profound implications in areas like PTSD research. EmotiGlass uses LCD screens to selectively block the wearer’s vision. This can be synchronized with heat beat, avoiding the instant where a negative emotional response is most likely. Think of them as 3D shutter glasses for mental health research.

PR-Holonet: Disaster Area Emergency Comms

Recovering from natural disasters is an enormous challenge. The infrastructure that supports the community is no longer in place and traditional communications simply cease to exist. PR-Holonet was inspired by the recovery process after hurricanes in Puerto Rico. It leverages the availability of commercial electronics, solar power sources, and enclosures to build a communications system that can be deployed and operated without the need for specialized training. Once in place, local devices using WiFi can utilize text-based communications transferred via satellite.

Congratulations to all who entered the 2018 Hackaday Prize. Taking time to apply your skill and experience to making the world better is a noble pursuit. It doesn’t end with the awarding of a prize. We have the ability to change lives by supporting one another, improving on great ideas, and sharing the calling to Build Something that Matters.

SMORES Robot Finds Its Own Way To The Campfire

Robots that can dynamically reconfigure themselves to adapt to their environments offer a promising advantage over their less dynamic cousins. Researchers have been working through all the challenges of realizing that potential: hardware, software, and all the interactions in between. On the software end of the spectrum, a team at University of Pennsylvania’s ModLab has been working on a robot that can autonomously choose a configuration to best fit its task at hand.

We’ve recently done an overview of modular robots, and we noted that coordination and control are persistent challenges in this area. The robot in this particular demonstration is a hybrid: a fixed core module serving as central command, plus six of the lab’s dynamic SMORES-EP modules. The core module has a RGB+Depth camera for awareness of its environment. A separate downwards-looking camera watches SMORES modules for awareness of itself.

Combining that data using a mix of open robot research software and new machine specific code, this team’s creation autonomously navigates an unfamiliar test environment. While it can adapt to specific terrain challenges like a wood staircase, there are still limitations on situations it can handle. Kudos to the researchers for honestly showing and explaining how the robot can get stuck on a ground seam, instead of editing that gaffe out to cover it up.

While this robot isn’t the completely decentralized modular robot system some are aiming for, it would be a mistake to dismiss based on that criticism alone. At the very least, it is an instructive step on the journey offering a tradeoff that’s useful on its own merits. And perhaps this hybrid approach will find application with a modular robot close to our hearts: Dtto, the winner of our 2016 Hackaday Prize.

[via Science News]

Continue reading “SMORES Robot Finds Its Own Way To The Campfire”

A Tour Through The Archetypical Asian Factory

Overseas factories can be sort of a mythical topic. News articles remind us that Flex (née Flextronics) employs nearly 200 thousand employees worldwide or that Foxconn is up to nearly a million. It must take an Apple-level of insider knowledge and capital to organize such a behemoth workforce, certainly something well past the level of cottage hardware manufacturing. And the manufacturing floor itself must be a temple to bead blasted aluminum and 20 axis robotic arms gleefully tossing products together. Right?

Well… the reality is a little different. The special sauce turns out to be people who are well trained for the task at hand and it doesn’t require a $1,000,000,000,000 market cap to get there.

[Adam leeb] was recently overseas to help out with the production ramp for one of his products and took a set of fantastic videos that walk us through an archetypical asian factory.

The Room

I’ve been to several factories and for me the weirdest part of the archetype is the soul crushing windowless conference room which is where every tour begins. Check out this one on the left. If you ever find yourself in a factory you will also find a room like this. It will have weird snacks and bottles of water and a shiny wood-esque table. It will be your home for many, many more hours than you ever dreamed. It’s actually possible there’s just one conference room in the universe and in the slice of spacetime where you visit it happens to be in your factory.

Ok, less metaphysics. It’s amazing to watch the myriad steps and people involved in taking one product from zero to retail-ready. [adam] gives us a well narrated overview of the steps to go from a single bare board to the fully assembled product. From The Conference Room he travels to The Floor and walks us through rows of operators performing their various tasks. If you’ve been reading for a while you will recognize the pick and place machines, the ovens, and the pogo pin test fixtures. But it’s a treat to go beyond that to see the physical product that houses the boards come together as well.

Check out [adam]’s videos after the break. The first deals with the assembly and test of his product, and the second covers the assembly of the circuit boards inside which is broadly referred to as SMT. Watching the second video you may notice the funny (and typical) contrast between the extremely automated SMT process and everything else.

Continue reading “A Tour Through The Archetypical Asian Factory”

Supercon Badge Hardware Hacking: Here’s What To Bring

Hackaday Superconference is just a week away (precious few tickets remain), a celebration of all things Hackaday, which naturally includes creative projects making the most of their hardware. Every attendee gets a platform for hacking in the form of the conference badge.

To make the most of your badge hacking fun, plan ahead so you will have the extra components and the tools you need. At the most basic, bring along a serial to USB cable and a PIC programmer. These are common and if you don’t own them, ask around and you will likely be able to borrow them. Now is also the time to put in a parts order for any components you want to use but don’t have on hand!

The badge is hackable without any extras, but it’s designed for adding hardware and hacking the firmware. We’re excited to see what you can do with it. We gave an overview of this retro themed pocket computer a few days ago, today we’re inviting you to exploit its potential for your hardware hacks.

Continue reading “Supercon Badge Hardware Hacking: Here’s What To Bring”