Make An Electroplating Marker, Because Plating Complex Objects Is Hard

If an object is conductive or has been given a conductive coating, it can be given a metal skin via electroplating. Electroplating is a simple process that is perfectly accessible to anyone in possession of vinegar, salt, a power supply, and some metal such as copper or nickel.

The process might be simple, but as with all such things there are a few gotchas. One of them is this: because electricity follows the path of least resistance, recessed areas of an object may not electroplate well (or at all) no matter how long the object is left immersed. To address this, [Brodie Fairhall] designed a 3D printed electroplating marker. The marker is essentially a more refined version of brush plating, and allows more precision and control than full immersion in an electrolyte bath.

[Brodie] created an excellent video that explains all one needs to start electroplating, and demonstrates using his marker to electroplate complex recessed shapes. Watch him coat a 3D-printed cat pendant in both copper and nickel in the video embedded below. It’s concise, well-edited, and chock full of useful tips.

Continue reading “Make An Electroplating Marker, Because Plating Complex Objects Is Hard”

Nanoparticles Make Mega Difference For “Unweldable” Aluminum

Though much of it is hidden from view, welding is a vital part of society. It’s the glue that holds together the framework of the cars we drive, the buildings we occupy, the appliances we use, and the heavy machinery that keeps us moving forward. Every year, the tireless search continues for stronger and lighter materials to streamline our journey into the future of transportation and space exploration.

Some of these futuristic materials have been around for decades, but the technology needed to weld them lagged behind. A group of researchers at UCLA’s Samueli School of Engineering recently found the key to unlocking the weldability of aluminium alloy 7075, which was developed in the 1940s. By adding titanium carbide nanoparticles to the mix, they were able to create a bond that proved to be stronger than the pieces themselves.

Continue reading “Nanoparticles Make Mega Difference For “Unweldable” Aluminum”

Anodizing Aluminium In The Land Of The Queen

Aluminium is a useful material, both for its light weight and resistance to corrosion. This resistance can be improved further with various treatments, one of the more popular being anodizing. This is the process behind the fancy colored metal bling on your cousin’s BMX bike. It’s possible to perform this in the home lab, when taking the appropriate precautions.

[The Recreational Machinist] has been experimenting with anodizing on and off for the last few years, and decided to share their process – as a “what did”, rather than a “how to”. The video is from the perspective of performing this task in the United Kingdom, as the availability of chemicals varies around the world and can affect the viability of various processes involved.

All the relevant techniques are covered, from cathode design to the hardware chosen to give the best results. There’s even discussion of the use of magnetic stirrers to prevent bubble marks, as well as proper cleaning processes to avoid unsightly blemishes from fingerprints or other contaminants. Perhaps the most useful tip provided is that using specific anodizing dyes does give the best results, though it is possible to get by with various types of clothing dye. As always, your mileage may vary.

There’s a big difference between reading theory and seeing the specifics of an actual working process, and [The Recreational Machinist] does a great job of showing off the realities of achieving this at home. We’ve seen it done before, with different chemicals too. Video after the break. Continue reading “Anodizing Aluminium In The Land Of The Queen”

Fluorescence Microscope On A Hacker’s Budget

Some of biology’s most visually striking images come from fluorescence microscopes. Their brilliant colors on black look like a neon sign from an empty highway. A brand new fluorescence microscope is beyond a hacker’s budget and even beyond some labs’, but there are ways to upgrade an entry-level scope for the cost of a few cups of coffee. [Justin Atkin] of The Thought Emporium published a scope hacking video which can also be seen below. He is becoming a reputed scope modder.

This video assumes a couple of things for the $10 price tag. The first premise is that you already have a scope, a camera adapter, and a camera capable of shooting long exposures. The second premise is that you are willing to break the seals and open the scope to make some reversible mods. Since you are reading Hackaday, maybe that is a given.

The premise is simple compared to the build, which is not rocket surgery, the light source from below illuminates the subject like a raver, and the filter removes any light that isn’t spectacular before it gets to the camera.

Continue reading “Fluorescence Microscope On A Hacker’s Budget”

Extracting Bismuth From Pepto Bismol

Bismuth is a very odd metal that you see in cosmetic pigments and as a replacement for lead, since it is less toxic. You will also see it — or an alloy — in fire sprinklers since it melts readily. However, the most common place you might encounter bismuth is Pepto Bismol — the ubiquitous pink liquid you use when your stomach is upset. [NileRed] tried extracting the bismuth from Pepto Bismol some time ago, but didn’t get good results. He decided that even though the process would not be cost-effective he wanted to try again, and you can see the crystals produced in the video below.

It turns out that you don’t need the pink liquid brand name. [Red Nile] started with ten boxes of generic chewable tablets — that’s 480 pills. A little bit of dilute hydrochloric acid eats the pills apart and generates a few reactions that he explains in the video.

Continue reading “Extracting Bismuth From Pepto Bismol”

Hydrogen Desk Cannon Is Fun With Electricity And Water

Water is a stable chemical, but with the addition of a little electricity, it can be split into its component parts. The result is just the right mix of H2 and O2 to convert back into water with a bang. [Peter Sripol] has built a charming desktop cannon in just such a way.

The build consists of a contact lens canister filled with a solution of water and potassium hydroxide. By running a DC current through this solution, oxyhydrogen is produced, which then passes through a flash arrestor and into a combustion chamber. Upon the chamber is affixed a rocket, which is propelled when the charge is lit by a piezoelectric ignitor.

The chemical side of the build was easy, but it took significant experimentation to get the rocket side of things working well. Eventually success was found by creating a blast cap out of paper and hot glue which allowed the energy of the blast to be more effectively transferred to the rocket body. With this in place, the cannon is capable of firing small paper rockets in excess of 20 feet.

With the brass and copper components mounted upon stained wood, this contraption would look beautiful on any desk and would be great for assailing one’s fellow coworkers. If your office doesn’t have an explosives policy yet, once you bring this in to work, it will soon. [Peter] uses similar technology in his Nerf blasters, too. Video after the break.

Continue reading “Hydrogen Desk Cannon Is Fun With Electricity And Water”

Reducing Carbon Emissions With Coal

It might seem like a paradox, but coal might hold the answer to solving carbon emission problems. The key isn’t burning it, but creating it using carbon dioxide from the atmosphere.  While this has always been possible in theory, high temperatures make it difficult in practice. However, a recent paper in Nature Communications shows how a special liquid metal electrocatalyst can convert the gas into a solid form of carbon suitable for, among other things, making high-quality capacitor electrodes. The process — you can see more about it in the video below — works at room temperatures.

It isn’t that hard to extract carbon dioxide from the air, the problem is what to do with it. Storing it as a gas or a liquid is inefficient and expensive, while converting it to a solid makes it much easier to store or even reuse for practical applications.

Continue reading “Reducing Carbon Emissions With Coal”