Mini Linear Actuators From DVD Drive Parts

For many years now a source for some of the smallest and cheapest home made CNC mechanisms has been the seemingly never-ending supply of surplus CD and DVD-ROM drives. The linear actuator that moves the laser may not be the longest or the strongest, but it’s free, and we’ve seen plenty of little X-Y tables using CD drives. It’s these mechanisms that [Nemo404] has taken a little further, freeing the lead screw and motor from the drive chassis and placing them in a 3D-printed enclosure for a complete linear actuator that can be used in other projects. (Video, embedded below.)

There seems to be no positional feedback, not even the limit switch that would grace a typical CD drive, but aside from that it makes for a compact unit. There are two versions, one for a linear bearing and the other for the brass bushes found in CD drives. It’s unclear how strong the result is, but it appears to be strong enough to demonstrate lifting a small container of screws.

Should you need to make your own actuator then aside from the easy-to-obtain old CD drive the files can be found on Thingiverse. And introduce yourself to the world of CD drives for CNC machines by taking a look at this mill.

Thanks [BaldPower] for the tip!

Continue reading “Mini Linear Actuators From DVD Drive Parts”

A Nested Gear Clock

One of the most common projects we see here at Hackaday is a clock. It could just be that we as humans are fascinated by the concept of time or that making a piece of functional art appeals to our utilitarian sense. In that spirit, [Alexandre Chappel] set out to make a large mechanical clock with complex gears.

The initial design was made in Fusion360 over a week and then in a somewhat bold move, [Alexandre] started up the CNC and cut all the parts out of valchromat. The basic idea of the clock is that the numbers move on the clock, not the hands. So the clock should show 10:25 instead of moving hands to the 10 and the 5. Most of the clock is made of up stacked gear assemblies, geneva drives, and many bearings. A single stepper motor drives the whole clock, which [Alexandre] admits is a bit of a cheat since trying to add springs and an escapement would add complexity to an already complex clock. He did have to adjust and recut a few gears but most of the assembly came together nicely. Some 3d printed numbers dropped into the CNCed slots offers much-improved readability.

A few problems became apparent once the system was together. The numbers don’t quite line up perfectly, which is unfortunate. He mentioned that tighter tolerances on the gears would likely help there. A fatal design flaw on the smallest disk became apparent as it needs to turn a sixth of the circle whereas the outer circle is just turning a tenth of the circle. Mechanical advantage isn’t in [Alexandre’s] favor and the stepper skips some steps and it slowly makes its way towards the next second digit of the hour.

If you’re looking for more beautiful artistic clocks, why not check out this circuit sculpture one?

Continue reading “A Nested Gear Clock”

DIY CNC Uses Lots Of 3D-Printed Parts

There are probably almost as many DIY CNC designs as there are DIY CNCs. And there’s nothing wrong with that! We really liked [maxvfischer’s] documentation on GitHub for a machine he made based on a design by [Ivan Miranada].

In addition to a complete bill of materials, there are Fusion 360 files and very good instructions. There are several tips that seemed like they would help even if you were building similar machines.

The machine uses HTD5M belts instead of the more prevalent lead screw design. Everything slides on MGN12H slides. There are detailed photographs covering not just the tricky parts but even how to extend the stepper motor wires.

The original design used a Makita RT0700C for the spindle, but [max] couldn’t find one of those, but found a similar version with the same dimensions.

The only tip we would add is to be careful using taps in a handheld drill. (Don’t ask us how we know that.) A drill press is safer, or you can even use a tap handle and do it the old-fashioned way.

The firmware is grbl on an Arduino, and there are complete instructions for setting that up, too. We were amazed at the number of pictures included along with the detailed description. If you were ever afraid you couldn’t duplicate a CNC project, this might be the one to tackle.

There are, of course, cheaper and simpler options with fewer capabilities. Some are even almost free courtesy of the local dumpster.

an image of the graffomat at work

Automate Your Graffiti With The Graffomat!

In Banksy’s book, Wall and Piece, there is a very interesting quote; “Imagine a city where graffiti wasn’t illegal, a city where everybody could draw whatever they liked…”. This sounds like it would be a very exciting city to live in, except for those of us who do not have an artistic bone in their body. Luckily, [Niklas Roy] has come up with the solution to this problem; the Graffomat, a spray can plotter.

The Graffomat is, in its creator’s own words, a “quick and dirty graffiti plotter.” It is constructed primarily from wood and driven by recycled cordless drills that pulls string pulleys to move the gantry.  The Arduino Nano at the heart of the Graffomat can be controlled by sending coordinates over serial. This allows for the connection of an SD card reader to drip-feed the machine, or a computer to enable real-time local or over-the-internet control.

We are especially impressed with how [Niklas] handled positional tracking. The cordless drills were certainly not repeatable like a stepper motor, as to allow for open-loop control. Therefore, the position of the gantry and head needed to be actively tracked. To achieve this, the axes are covered with black and white striped encoder strips, that is then read by a pair of phototransistors as the machine moves along. These can then be paired with the homing switches in the top left corner to determine absolute position.

Graffomat is not the first automated graffiti machine we’ve covered. Read here about the robot that painted murals by climbing smokestacks in Estonia. 

Continue reading “Automate Your Graffiti With The Graffomat!”

Small low-cost CNC mill with rotary tool

Minimal Mill: The Minamil

Having a few machine tools at one’s disposal is a luxury that not many of us are afforded, and often an expensive one at that. It is something that a large percentage of us may dream about, though, and with some commonly available tools and inexpensive electronics a few people have put together some very inexpensive CNC machines. The latest is the Minamil, which uses a rotary tool and straps it to an economical frame in order to get a functional CNC mill setup working.

This project boasts impressively low costs at around $15 per axis. Each axis uses readily available parts such as bearings and threaded rods that are readily installed in the mill, and for a cutting head the build is based on a Dremel-like rotary tool that has a similarly low price tag. Let’s not ignore the essentially free counterweight that is used.

For control, an Arduino with a CNC shield powers the three-axis device which is likely the bulk of the cost of this project. [Paul McClay] also points out that a lot of the material he needed for this build can be salvaged from things like old printers, so the $45 price tag is a ceiling, not a floor.

The Minamil has been demonstrated milling a wide variety of materials with excellent precision. Both acrylic and aluminum are able to be worked with this machine, but [Paul] also demonstrates it in its capacity to mill PCBs. It does have some limitations but for the price it seems that this mill can’t be beat, even compared to his previous CNC build which repurposed old CD drives.

Minimalist Robot Arm Really Stacks Up

There’s nothing like a little weekend project, especially one that ends up better than you expected. And when you literally build a robotic arm out of workshop scraps, so much the better.

Longtime readers will no doubt recognize the build style used here as that of [Norbert Heinz], aka “Homofaciens” on YouTube. [Norbert] has a way of making trash do his bidding, and has shown us all kinds of seemingly impossible feats of mechatronics with just what’s lying around. In this case, his robot arm is made from scrap wooden roofing battens, or what we’d call furring strips here in the US. The softwood isn’t something you’d think would make a great material for building robots, but [Norbert] makes its characteristics work for him, like using wax-lubricated holes for hinge points. Steppers and lead screws cannibalized from an old CNC build, along with the drive electronics, provide the motion. It’s a bit — compliant — but precise enough to pick up nuts and stack them nicely. The video below gives an overview of the build, and detailed instructions are available too.

We always appreciated [Norbert]’s minimalist builds, and seeing what can be accomplished with almost nothing is always inspirational. If you’re not familiar with his work, check out his cardboard and paperclip CNC plotter, his tin can encoders, or his plasma-powered printer.

Continue reading “Minimalist Robot Arm Really Stacks Up”

Giant CNC Machine Measures A Full Cubic Meter

There are plenty of designs for table-top 3D printers, engravers, and general CNC machines out there. However, if you wanna build big things and build them fast, sometimes you need a machine that can handle bigger jobs. This gigantic 1x1x1 m 5-axis CNC machine from [Brian Brocken] absolutely fits the bill.

The build relies on 3D-printed components and aluminium tubing to make it accessible for anyone to put together. [Brian] notes that 25×25 mm tubing with a 2 mm wall thickness does an okay job, but those aiming to minimize deflection would do well to upgrade to 5 mm thickness instead. Stepper motors are NEMA 23 size, though the Y-axis uses a pair of NEMA 17s. This is necessary to deal with the immense size of the machine. Control is thanks to an Arduino Mega fitted with a RAMPS board, running the Marlin firmware.

The plan is to use the machine to test out a variety of CNC machining techniques. It could make for a great maxi-sized 3D printer, and should be able to handle some basic 5-axis milling of very soft materials like foams. This might seem silly on the face of it, but it can be of great use for mold making tasks.

We’ve seen giant CNC routers built before, too, and they can readily be put to great use. Video after the break.

Continue reading “Giant CNC Machine Measures A Full Cubic Meter”