Australia’s Steady March Towards Space

The list of countries to achieve their own successful orbital space launch is a short one, almost as small as the exclusive club of states that possess nuclear weapons. The Soviet Union was first off the rank in 1957, with the United States close behind in 1958, and a gaggle of other aerospace-adept states followed in the 1960s, 1970s, and 1980s. Italy, Iran, North Korea and South Korea have all joined the list since the dawn of the new millennium.

Absent from the list stands Australia. The proud island nation has never stood out as a player in the field of space exploration, despite offering ground station assistance to many missions from other nations over the years. However, the country has continued to inch its way to the top of the atmosphere, establishing its own space agency in 2018. Since then, development has continued apace, and the country’s first orbital launch appears to be just around the corner.

Continue reading “Australia’s Steady March Towards Space”

The Everlasting Hunt For The Loch Ness Monster

When a Loch Ness Monster story appears at the start of April, it pays to check the date on the article just to avoid red faces. But there should be no hoax with this one published on the last day of March, scientists from the UK’s National Oceanography Centre were conducting underwater robotics tests in Scotland’s Loch Ness, and stumbled upon a camera trap lost by Nessie-hunters in the 1970s. Just to put the cherry on the cake of a perfect news story, the submarine in question is the famous “Boaty McBoatface”, so named as a consolation after the British Antarctic Survey refused to apply the name to their new ship when it won an online competition.

The Most Extreme Instamatic in The World

An NOC scientist holds the camera in its container
Sadly the NOC haven’t released close-ups of the inner workings of the device.

The camera trap has survived five decades underwater thanks to a sturdy glass housing, and appears to be quite an ingenious device. A humble Kodak Instamatic camera with a 126 film and a flash bulb is triggered and has its film advanced by a clockwork mechanism, in turn operated by a bait line. Presumably because of the four flash bulbs in the Kodak’s flash cube, it’s reported that it could capture four images. The constant low temperature at the bottom of a very deep loch provided the perfect place to store exposed film, and they have even been able to recover some pictures. Sadly none of then contain a snap of Nessie posing for the camera.

Continue reading “The Everlasting Hunt For The Loch Ness Monster”

General Fusion Claims Success With Magnetized Target Fusion

It’s rarely appreciated just how much more complicated nuclear fusion is than nuclear fission. Whereas the latter involves a process that happens all around us without any human involvement, and where the main challenge is to keep the nuclear chain reaction within safe bounds, nuclear fusion means making atoms do something that goes against their very nature, outside of a star’s interior.

Fusing helium isotopes can be done on Earth fairly readily these days, but doing it in a way that’s repeatable — bombs don’t count — and in a way that makes economical sense is trickier. As covered previously, plasma stability is a problem with the popular approach of tokamak-based magnetic confinement fusion (MCF). Although this core problem has now been largely addressed, and stellarators are mostly unbothered by this particular problem, a Canadian start-up figures that they can do even better, in the form of a nuclear fusion reactors based around the principle of magnetized target fusion (MTF).

Although General Fusion’s piston-based fusion reactor has people mostly very confused, MTF is based on real physics and with GF’s current LM26 prototype having recently achieved first plasma, this seems like an excellent time to ask the question of what MTF is, and whether it can truly compete billion-dollar tokamak-based projects.

Continue reading “General Fusion Claims Success With Magnetized Target Fusion”

Checking In On The ISA Wars And Its Impact On CPU Architectures

An Instruction Set Architecture (ISA) defines the software interface through which for example a central processor unit (CPU) is controlled. Unlike early computer systems which didn’t define a standard ISA as such, over time the compatibility and portability benefits of having a standard ISA became obvious. But of course the best part about standards is that there are so many of them, and thus every CPU manufacturer came up with their own.

Throughout the 1980s and 1990s, the number of mainstream ISAs dropped sharply as the computer industry coalesced around a few major ones in each type of application. Intel’s x86 won out on desktop and smaller servers while ARM proclaimed victory in low-power and portable devices, and for Big Iron you always had IBM’s Power ISA. Since we last covered the ISA Wars in 2019, quite a lot of things have changed, including Apple shifting its desktop systems to ARM from x86 with Apple Silicon and finally MIPS experiencing an afterlife inĀ  the form of LoongArch.

Meanwhile, six years after the aforementioned ISA Wars article in which newcomer RISC-V was covered, this ISA seems to have not made the splash some had expected. This raises questions about what we can expect from RISC-V and other ISAs in the future, as well as how relevant having different ISAs is when it comes to aspects like CPU performance and their microarchitecture.

Continue reading “Checking In On The ISA Wars And Its Impact On CPU Architectures”

Relativity Space Changes Course On Path To Orbit

In 2015, Tim Ellis and Jordan Noone founded Relativity Space around an ambitious goal: to be the first company to put a 3D printed rocket into orbit. While additive manufacturing was already becoming an increasingly important tool in the aerospace industry, the duo believed it could be pushed further than anyone had yet realized.

Rather than assembling a rocket out of smaller printed parts, they imagined the entire rocket being produced on a huge printer. Once the methodology was perfected, they believed rockets could be printed faster and cheaper than they could be traditionally assembled. What’s more, in the far future, Relativity might even be able to produce rockets off-world in fully automated factories. It was a bold idea, to be sure. But then, landing rockets on a barge in the middle of the ocean once seemed pretty far fetched as well.

An early printed propellant tank.

Of course, printing something the size of an orbital rocket requires an exceptionally large 3D printer, so Relativity Space had to built one. It wasn’t long before the company had gotten to the point where they had successfully tested their printed rocket engine, and were scaling up their processes to print the vehicle’s propellant tanks. In 2018 Bryce Salmi, then an avionics hardware engineer at Relatively Space, gave a talk at Hackaday Supercon detailing the rapid progress the company had made so far.

Just a few years later, in March of 2023, the Relativity’s first completed rocket sat fueled and ready to fly on the launch pad. The Terran 1 rocket wasn’t the entirely printed vehicle that Ellis and Noone had imagined, but with approximately 85% of the booster’s mass being made up of printed parts, it was as close as anyone had ever gotten before.

The launch of Terran 1 was a huge milestone for the company, and even though a problem in the second stage engine prevented the rocket from reaching orbit, the flight proved to critics that a 3D printed rocket could fly and that their manufacturing techniques were sound. Almost immediately, Relativity Space announced they would begin work on a larger and more powerful successor to the Terran 1 which would be more competitive to SpaceX’s Falcon 9.

Now, after an administrative shakeup that saw Tim Ellis replaced as CEO, the company has released a nearly 45 minute long video detailing their plans for the next Terran rocket — and explaining why they won’t be 3D printing it.

Continue reading “Relativity Space Changes Course On Path To Orbit”

LTA’s Pathfinder 1: The Dawn Of A New Age Of Airships?

Long before the first airplanes took to the skies, humans had already overcome gravity with the help of airships. Starting with crude hot air balloons, the 18th century saw the development of more practical dirigible airships, including hydrogen gas balloons. On 7 January 1785, French inventor, and pioneer of gas balloon flight Jean-Pierre Blanchard would cross the English Channel in such a hydrogen gas balloon, which took a mere 2.5 hours. Despite the primitive propulsion and steering options available at the time, this provided continued inspiration for new inventors.

With steam engines being too heavy and cumbersome, it wasn’t until the era of internal combustion engines a century later that airships began to develop into practical designs. Until World War 2 it seemed that airships had a bright future ahead of them, but amidst a number of accidents and the rise of practical airplanes, airships found themselves mostly reduced to the not very flashy role of advertising blimps.

Yet despite popular media having declared rigid airships such as the German Zeppelins to be dead and a figment of a historic fevered imagination, new rigid airships are being constructed today, with improvements that would set the hearts of 1930s German and American airship builders aflutter. So what is going on here? Are we about to see these floating giants darken the skies once more?

Continue reading “LTA’s Pathfinder 1: The Dawn Of A New Age Of Airships?”

FOSDEM 2025, A Hardware Hacker’s Haven

Have you been to FOSDEM? It’s a yearly two-day megaconference in Brussels, every first weekend of February. Thousands of software and hardware hackers from all across Europe come here each year, make friends, talk software and hardware alike, hold project-specific meetups to drink beer and talk shop, and just have a fun weekend surrounded by like-minded people.

In particular, FOSDEM has free admission – drop by for the weekend, no need to buy entry tickets, just sort out your accomodation, food, travel, and visit for a day or two. I’ve covered FOSDEM quite extensively in 2023, so if you want to know more about how it works, I invite you to check out that article – plenty of stories, cool facts about FOSDEM, showcases, and so on. This year, I’ve also been to FOSDEM, it’s been pretty great, and I’d like to tell you about cool things I’ve seen happen during FOSDEM 2025.

FOSDEM is often described as an open software conference, and you might’ve had been fooled by this if you simply have checked the Wikipedia page. However, let me assure you – there’s always plenty of hardware, large amounts of it! This year, I feel like hardware has taken the spotlight in particular – let me show you at least some of it, so that you know what kinds of cool stuff you can expect and plan for in 2026.

Continue reading “FOSDEM 2025, A Hardware Hacker’s Haven”