Omnicopter catching a ball

A Flying, Fetching, Helping-Hand Omnicopter

Wouldn’t it be nice if you had a flying machine that could maneuver in any direction while rotating around any axis while maintaining both thrust and torque? Attach a robot arm and the machine could position itself anywhere and move objects around as needed. [Dario Brescianini] and [Raffaello D’Andrea] of the Institute for Dynamic Systems and Control at ETH Zurich, have come up with their Omnicopter that does just that using eight rotors in configurations that give it six degrees of freedom. Oh, and it plays fetch, as shown in the first video below.

Omnicopter propeller orientations
Omnicopter propeller orientations

Each propeller is reversible to provide thrust in either direction. Also on the vehicle itself is a PX4FMU Pixhawk flight computer, eight motors and motor controllers, a four-cell 1800 mAh LiPo battery, and communication radios. Radio communication is necessary because the calculations for the position and outer attitude are done on a desktop computer, which then sends the desired force and angular rates to the vehicle. The desktop computer knows the vehicle’s position and orientation because they fly it in the Flying Machine Arena, a large room at ETH Zurich with an infrared motion-capture system.

The result is a bit eerie to watch as if gravity doesn’t apply to the Omnicopter. The flying machine can be just plain playful, as you can see in the first video below where it plays fetch by using an attached net to catch a ball. When returning the ball, it actually rotates the net to dump the ball into the thrower’s hand. But you can see that in the video.

Continue reading “A Flying, Fetching, Helping-Hand Omnicopter”

The Tri Rotor Drone: Why Has It Been Overlooked?

A DJI Phantom 3. Zimin.V.G. [CC BY-SA 4.0]
If you are a watcher of the world of drones, or multirotors, you may have a fixed idea of what one of these aircraft looks like in your mind. There will be a central pod containing batteries and avionics, with a set of arms radiating from it, each of which will have a motor and a propeller on its end. You are almost certainly picturing a four-rotor design, such as the extremely popular DJI Phantom series of craft.

Of course, four-rotor designs are just one of many possible configurations of a multirotor. You will commonly see octocopters, but sometimes we’ve brought you craft that really put the “multi” in “multirotor”. If the computer can physically control a given even number of motors, within reason, it can be flown.

There is one type of multirotor you don’t see very often though, the trirotor. Three propellers on a drone is a rare sight, and it’s something we find surprising because it’s a configuration that can have some surprising benefits. To think about why, it’s worth taking a look at some of the characteristics of a three-rotor machine’s flight.

Continue reading “The Tri Rotor Drone: Why Has It Been Overlooked?”

Hackaday Prize Entry: Coaxial Drones

[Glytch] has been building drones since before they were called drones. Instead of submitting his time machine into the Hackaday Prize, he’s throwing his pocket sized, 3D printable coaxial drone into the ring.

His focus is on designing small and very portable drones, preferably one that has folding arms and can fit into a backpack. His portfolio even includes a clone of the DJI Mavic, the gimbaled camera-carrying consumer drone known for its small volume when folded.

Navi — [Glitch]’s entry for the Hackaday Prize — is a complete departure from quadcopters with folding arms. It’s simple to use, and all he needs to do to launch it is hold it in the air and press a button. It does this by being a coaxial drone, or a cylinder with a pair of folding props sticking out the side. The chassis and mechanics for this drone are 3D printable, making this an awesome entry for the Hackaday Prize.

DIY Lap Counters For Drone Racing

Drone racing is a very exciting sport, in which there is a lot of room for hackers and makers to add that special sauce into the mix. Usually the aerial finish line requires special race-timing hardware to do the lap counting, and there are timing gate transponders available for around $40. In his project CoreIR and CoreIR-Uplink, [Michael Rickert] decided to reverse engineer the IR Protocol that goes into these beacons and made a homebrew version that mimics the original. The transponders send a 7-digit number out repeatedly to a receiver at the finish line as the UAV passes by and that helps track how fast drone pilots flew around a race track. The hack involves flipping an IR LED ON and OFF with the correct timing, and [Michael Rickert] confesses that it was not as easy as he had imagined.

Using a logic analyser he was able to capture the modulated 38Khz carrier signal and extract the timing from the original beacon, but it took a number of iterations to get the code just right. The IRRemote library has a ‘sendRaw’ function which is quite helpful in these situations and was employed for the task. He experimented with a number of Arduino boards to power the project, before finally going with the Arduino Pro Mini. He has shared the code on github, along with photos of the finished hack which replaces the original circuit. The final sketches include functions to generate the 7-digit code to uniquely identify the quadcopter, which completes the hack in itself.

If that was not enough, he’s gone a step further by coding and sharing a desktop client as well, which turns this hack into a full-fledged project and should prove quite useful for drone racers on a budget. The app is written in NodeJS and packaged using the electron framework, a choice that makes for a very simple way to create cross-platform desktop applications.

A build tutorial is available for you to get started, and if drone racing seems a bit tame, check out Drone Wars for a little more carnage.

KFC Winged Aircraft Actually Flies

[PeterSripol] has made an RC model airplane but instead of using normal wings he decided to try getting it to fly  using some KFC chicken buckets instead. Two KFC buckets in the place of wings were attached to a motor which spins the buckets up to speed. With a little help from the Magnus effect this creates lift.

Many different configurations were tried to get this contraption off the ground. They eventually settled on a dual prop setup, each spinning counter to each other for forward momentum. This helped to negate the gyroscopic effect of the spinning buckets producing the lift. After many failed build-then-fly attempts they finally got it in the air. It works, albeit not to well, but it did fly and was controllable. Perhaps with a few more adjustments and a bit of trial and error someone could build a really unique RC plane using this concept.

Continue reading “KFC Winged Aircraft Actually Flies”

Submersible Robots Hunt Lice With Lasers

De-lousing is a trying agricultural process. It becomes a major problem in pens which contain the hundreds of thousands of salmon farmed by Norwegians — the world’s largest salmon exporter — an environment which allows the parasite to flourish. To tackle the problem, the Stingray, developed by [Stingray Marine Solutions],  is an autonomous drone capable of destroying the lice with a laser in the order of tens of thousands per day.

Introduced in Norway back in 2014 — and some areas in Scotland in 2016 — the Stingray floats in the salmon pen, alert and waiting. If the lice-recognition software (never thought you’d hear that term, huh?) detects a parasite for more than two frames in the video feed, it immediately annihilates it with a 530 nanometre-wide, 100 millisecond laser pulse from up to two metres away. Don’t worry — the salmon’s scales are reflective enough to leave it unharmed, while the pest is fried to a crisp.  In action, it’s reminiscent of a point-defense laser on a spaceship.

Continue reading “Submersible Robots Hunt Lice With Lasers”

Propeller Backpack For Lazy Skiers

At first glance, it looks eerily similar to Inspector Gadget’s Propeller Cap, except it’s a backpack. [Samm Sheperd] built a Propeller Backpack (video, embedded after the break) which started off as a fun project but almost ended up setting him on fire.

Finding himself snowed in during a spell of cold weather, he found enough spare RC and ‘copter parts to put his crazy idea in action. He built a wooden frame, fixed the big Rimfire 50CC outrunner motor and prop to it, slapped on a battery pack and ESC, and zip-tied it all on to the carcass of an old backpack.

Remote control in hand, and donning a pair of Ski’s, he did a few successful trial runs. It looks pretty exciting watching him zip by in the snowy wilderness. Well, winter passed by, and he soon found himself in sunny California. The Ski’s gave way to a bike, and a local airfield served as a test track. He even manages to put in some exciting runs on the beach. But the 10S 4000 mAH batteries seem to be a tad underpowered to his liking, and the motor could do with a larger propeller. He managed to source a 12S 10,000 mAH battery pack, but that promptly blew out his Aerostar ESC during the very first static trial.

He then decided to rebuild it from ground up. A ten week welding course that he took to gain some college credits proved quite handy. He built a new TiG welded Aluminium frame which was stronger and more lightweight than the earlier wooden one. He even thoughtfully added a propeller safety guard after some of his followers got worried, although it doesn’t look very effective to us. A bigger propeller was added and the old burnt out ESC was replaced with a new one. It was time for another static trial before heading out in to the wide open snow again. And that’s when things immediately went south. [Samm] was completely unaware as the new ESC gloriously burst in to flames (8:00 into the third video), and it took a while for him to realize why his video recording friend was screaming at him. Check out the three part video series after the break to follow the story of this hack. For a bonus, check out the 90 year old gent who stops by for a chat on planes and flying (8:25 in the third video).

But [Samm] isn’t letting this setback pin him down. He’s promised to take this to a logical finish and build a reliable, functional Propeller Backpack some time soon. This isn’t his first rodeo building oddball hacks. Check out his experiment on Flying Planes With Squirrel Cages.

We seem to be catching a wave of wind-powered transportation hacks these days. Hackaday’s own [James Hobson] spent time in December on a similar, arguably safer, concept. He attached ducted fans to the back of a snowboard. We like this choice since flailing limbs won’t get caught in these types of fans.

Continue reading “Propeller Backpack For Lazy Skiers”