Hands-On: BornHack’s Light Sabre Badge

A badge modelled after the handle of a light sabre? Yes Please! This Star Wars themed hardware is the work of hardware designer Thomas Flummer for the 2019 BornHack conference held in Denmark last month. (Check out my roundup of the event if this is the first you’ve heard of it.)

It's not a badge but a light sabre! The front of the BornHack 2019 badge.
It’s not a badge but a light sabre! The front of the BornHack 2019 badge.

It fits the hand nicely, and with clever side-on placement of the two AA battery holders (a trick we first saw with the 2016 Hackday Superconference badge) it also keeps any protruding solder joints away from clothing. In the centre of the badge is the 240×240 pixel colour display that also hides the Silicon Labs Happy Gecko processor and its surrounding components. Three buttons at the edge of the board to the left of the screen are a nice fit for your thumb when holding it in your left hand — a good choice if you happen to leave your right hand behind on a visit to the Cloud City of Bespin.

Between the battery holders lies a four-way joystick, two buttons, and a 6-pin add-on connector. Above it is a micro SD card socket and a micro USB socket, and above them are an IR emitter and receiver. All of the hardware is on the front of the PCB, with no components on the reverse (other than the solder joints for the batteries). But it is there you will find a set of exposed pads for serial and I2C interfaces. Continue reading “Hands-On: BornHack’s Light Sabre Badge”

Hackaday Podcast 035: LED Cubes Taking Over, Ada Vanquishes C Bugs, Rad Monitoring Is Hot, And 3D Printing Goes Full 3D

Hackaday Editors Mike Szczys and Elliot Williams get caught up on the most interesting hacks of the past week. On this episode we take a deep dive into radiation-monitor projects, both Geiger tube and scintillator based, as well as LED cube projects that pack pixels onto six PCBs with parts counts reaching into the tens of thousands. In the 3D printing world we want non-planar printing to be the next big thing. Padauk microcontrollers are small, cheap, and do things in really interesting ways if you don’t mind embracing the ecosystem. And what’s the best way to read a water meter with a microcontroller?

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 035: LED Cubes Taking Over, Ada Vanquishes C Bugs, Rad Monitoring Is Hot, And 3D Printing Goes Full 3D”

A 4G Rover And The Benefits Of A Shakedown Mission

Many moons ago, in the shadowy darkness of the 1990s, a young Lewin visited his elder cousin. An adept AMOS programmer, he had managed to get his Amiga 500 to control an RC car, with little more than a large pile of relays and guile. Everything worked well, but there was just one problem — once the car left the room, there was no way to see what was going on.

Why don’t you put a camera on it? Then you can drive it anywhere!

Lewin

This would go on to inspire the TKIRV project approximately 20 years later. The goal of the project is to build a rover outfitted with a camera, which is controllable over cellular data networks from anywhere on Earth. For its upcoming major expedition, the vehicle is to receive solar panels to enable it to remain operable in distant lands for extended periods without having to return to base to recharge.

The project continues to inch towards this goal, but as the rover nears completion, the temptation to take it out for a spin grew ever greater. What initially began as an exciting jaunt actually netted plenty of useful knowledge for the rover’s further development.

Continue reading “A 4G Rover And The Benefits Of A Shakedown Mission”

Books You Should Read: Exact Constraint: Machine Design Using Kinematic Principles

Surely, if you’re reading this website you’ve teased the thought of building your own 3D printer. I certainly did. But from my years of repeated rebuilds of my homebrew laser cutter, I learned one thing: machine design is hard, and parts cost money. Rather than jump the gun and start iterating on a few machine builds like I’ve done before, I thought I’d try to tease out the founding principles of what makes a rock-solid machine. Along the way, I discovered this book: Exact Constraint: Machine Design Using Kinematic Principles by Douglass L. Blanding.

This book is a casual but thorough introduction to the design of machines using the method of exact constraint. This methodology invites us to carefully assess how parts connect and move relative to each other. Rather than exclusively relying on precision parts, like linear guides or bearings, to limit a machine’s degrees of freedom, this book shows us a means of restricting degrees of freedom by looking at the basic kinematic connections between parts. By doing so, we can save ourselves cost by using precision rails and bearings only in the places where absolutely necessary.

While this promise might seem abstract, consider the movements made by a 3D printer. Many styles of this machine rely on motor-driven movement along three orthogonal axes: X, Y, and Z. We usually restrict individual motor movement to a single axis by constraining it using a precision part, like a linear rod or rail. However, the details of how we physically constrain the motor’s movements using these parts is a non-trivial task. Overconstrain the axis, and it will either bind or wiggle. Underconstrain it, and it may translate or twist in unwanted directions. Properly constraining a machine’s degrees of freedom is a fundamental aspect of building a solid machine. This is the core subject of the book: how to join these precision parts together in a way that leads to precision movement only in the directions that we want them.

Part of what makes this book so fantastic is that it makes no heavy expectations about prior knowledge to pick up the basics, although be prepared to draw some diagrams. Concepts are unfolded in a generous step-by-step fashion with well-diagrammed examples. As you progress, the training wheels come loose, and examples become less-heavily decorated with annotations. In this sense, the book is extremely coherent as subsequent chapters build off ideas from the previous. While this may sound daunting, don’t fret! The entire book is only about 140 pages in length.

Continue reading “Books You Should Read: Exact Constraint: Machine Design Using Kinematic Principles”

Ask Hackaday: At What Point Is Hand Pick And Place Too Much Work?

Just a section from a render of the board in question. It's a daunting task for anyone facing it with a set of tweezers or a vacuum pencil.
Just a section from a render of the board in question. It’s a daunting task for anyone facing it with a set of tweezers or a vacuum pencil.

A friend of ours here at Hackaday has an audacious design in the works that we hope will one day become a prototype that we can feature here. That day may be a little while coming though, because it has somewhere close to a thousand of the smaller SMD components in multiple repeated blocks on a modestly sized board, and his quote from a Chinese board house for assembly is eye-watering. He lacks a pick-and-place machine of his own, and unsurprisingly the idea of doing the job by hand is a little daunting.

We can certainly feel his pain, for in the past we’ve been there. The job described in the linked article had a similar number of components with much more variety and on a much larger board, but still took two experienced engineers all day and into the night to populate. The solder paste had started to spread by the end, morphing from clearly defined blocks to an indistinct mush often covering more than one pad. Our eyes meanwhile were somewhat fatigued by the experience, and it’s not something any sane person would wish to repeat.

Mulling over our friend’s board and comparing it with the experience related above, are we on the edge of what is possible with hand pick-and-place, or should we be working at the next level? Board assembly is a finely judged matter of economics at a commercial level, but when at a one-off personal construction level the option of paying for assembly just isn’t there, is there a practical limit to the scale of the task? Where do you, our readers, draw the line? We’d love to hear your views.

Meanwhile our friend’s audacious project is still shrouded in a bit of secrecy, but we’ll continue to encourage him to show it to the world. It’s not often that you look at a circuit diagram and think “I wish I’d thought of that!”, but from what we’ve seen this fits the category. If he pulls it off then we’ll bring you the result.

PCB image, Andrew Magill (CC BY 2.0).

Hackaday Podcast 034: 15 Years Of Hackaday, ESP8266 Hacked, Hydrogen Seeps Into Cars, Giant Scara Drawbot, Really Remote RC Car Racing

Elliot Williams and Mike Szczys wish Hackaday a happy fifteenth birthday! We also jump into a few vulns found (and fixed… ish) in the WiFi stack of ESP32/ESP8266 chips, try to get to the bottom of improved search for 3D printable CAD models, and drool over some really cool RC cars that add realism to head-to-head online racing. We look at the machining masterpiece that is a really huge SCARA arm drawbot, ask why Hydrogen cars haven’t been seeing the kind of sunlight that fully electric vehicles do, and give a big nod of approval to a guide on building your own custom USB cables.

Take a look at the links below if you want to follow along, and as always tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 034: 15 Years Of Hackaday, ESP8266 Hacked, Hydrogen Seeps Into Cars, Giant Scara Drawbot, Really Remote RC Car Racing”

This Week In Security: Mass IPhone Compromise, More VPN Vulns, Telegram Leaking Data, And The Hack Of @Jack

In a very mobile-centric installment, we’re starting with the story of a long-running iPhone exploitation campaign. It’s being reported that this campaign was being run by the Chinese government. Attack attribution is decidedly non-trivial, so let’s be cautious and say that these attacks were probably Chinese operations.

In any case, Google’s Project Zero was the first to notice and disclose the malicious sites and attacks. There were five separate vulnerability chains, targeting iOS versions 10 through 12, with at least one previously unknown 0-day vulnerability in use. The Project Zero write-up is particularly detailed, and really documents the exploits.

The payload as investigated by Project Zero doesn’t permanently install any malware on the device, so if you suspect you could have been compromised, a reboot is sufficient to clear you device.

This attack is novel in how sophisticated it is, while simultaneously being almost entirely non-targeted. The malicious code would run on the device of any iOS user who visited the hosting site. The 0-day vulnerability used in this attack would have a potential value of over a million dollars, and these high value attacks have historically been more targeted against similarly high-value targets. While the websites used in the attack have not been disclosed, the sites themselves were apparently targeted at certain ethnic and religious groups inside China.

Once a device was infected, the payload would upload photos, messages, contacts, and even live GPS information to the command & control infrastructure. It also seems that Android and Windows devices were similarly targeted in the same attack.

Telegram Leaking Phone Numbers

“By default, your number is only visible to people who you’ve added to your address book as contacts.” Telegram, best known for encrypted messages, also allows for anonymous communication. Protesters in Hong Kong are using that feature to organize anonymously, through Telegram’s public group messaging. However, a data leak was recently discovered, exposing the phone numbers of members of these public groups. As you can imagine, protesters very much want to avoid being personally identified. The leak is based on a feature — Telegram wants to automatically connect you to other Telegram users whom you already know.

By default, your number is only visible to people who you’ve added to your address book as contacts.

Telegram is based on telephone numbers. When a new user creates an account, they are prompted to upload their contact list. If one of the uploaded contacts has a number already in the Telegram system, those accounts are automatically connected, causing the telephone numbers to become visible to each other. See the problem? An attacker can load a device with several thousand phone numbers, connect it to the Telegram system, and enter one of the target groups. If there is a collision between the pre-loaded contacts and the members of the group, the number is outed. With sufficient resources, this attack could even be automated, allowing for a very large information gathering campaign.

In this case, it seems such a campaign was carried out, targeting the Hong Kong protesters. One can’t help but think of the first story we covered, and wonder if the contact data from compromised devices was used to partially seed the search pool for this effort.

The Hack of @Jack

You may have seen that Twitter’s CEO, Jack [@Jack] Dorsey’s Twitter account was hacked, and a series of unsavory tweets were sent from that account. This seems to be a continuing campaign by [chucklingSquad], who have also targeted other high profile accounts. How did they manage to bypass two factor authentication and a strong password? Cloudhopper. Acquired by Twitter in 2010, Cloudhopper is the service that automatically posts a user’s SMS messages to Twitter.

Rather than a username and password, or security token, the user is secured only by their cell phone number. Enter the port-out and SIM-swap scams. These are two similar techniques that can be used to steal a phone number. The port-out scam takes advantage of the legal requirement for portable phone numbers. In the port-out scam, the attacker claims to be switching to a new carrier. A SIM-swap scam is convincing a carrier he or she is switching to a new phone and new SIM card. It’s not clear which technique was used, but I suspect a port-out scam, as Dorsey hadn’t gotten his cell number back after several days, while a SIM swap scam can be resolved much more quickly.

Google’s Bug Bounty Expanded

In more positive news, Google has announced the expansion of their bounty programs. In effect, Google is now funding bug bounties for the most popular apps on the Play store, in addition to Google’s own code. This seems like a ripe opportunity for aspiring researchers, so go pick an app with over 100 million downloads, and dive in.

An odd coincidence, that 100 million number is approximately how many downloads CamScanner had when it was pulled from the Play store for malicious behavior. This seems to have been caused by a third party advertisement library.

Updates

Last week we talked about Devcore and their VPN Appliance research work. Since then, they have released part 3 of their report. Pulse Secure doesn’t have nearly as easily exploited vulnerabilities, but the Devcore team did find a pre-authentication vulnerability that allowed reading arbitraty data off the device filesystem. As a victory lap, they compromised one of Twitter’s vulnerable devices, reported it to Twitter’s bug bounty program, and took home the highest tier reward for their trouble.