10-Way Game Console Lets Everyone Play

[Bitluni]’s motto seems to be, “When you’re busy, get busier.” At least that would explain adding even more work to his plate in the run-up to the Hanover Maker Faire and coming up with a ten-player game console from scratch.

As for this being extra work, recall that [bitluni] had already committed to building a giant ping pong ball LED wall for the gathering. That consisted of prototyping a quarter-scale panel, building custom tooling to get him past the literal pain point of punching 1200 holes, and wiring, programming and testing the whole display. Building a game console that supports ten players at once seems almost tame by comparison. The console is built around an ESP32 module, either WROOM or WROVER thanks to a clever multifunctional pad layout on the slick-looking white PCBs. [bitluni] went with a composite video output using the fast R-2R ladder network DAC that he used for his ESP32 VGA project. The console supports ten Nintendo gamepads for a simple but engaging game something like the Tron light cycles. Unsurprisingly, players found it more fun to just crash into each other on purpose.

Sure, it could have been biting off more than he could chew, but [bitluni] delivered and we appreciate the results. There’s something to be said for adding a little pressure to the creative process.

Continue reading “10-Way Game Console Lets Everyone Play”

Custom Lego Server Case Looks As Though It Came Straight From A Data Center

The picture above appears to show two unremarkable 2U rack servers, of the kind that are probably hosting the page you’re reading right now. Nothing special there – until you look carefully and realize that the rack server case on the left is made entirely from Lego. And what’s more, the server even works.

When it comes to building Lego computers, [Mike Schropp] is the guy to call. We’ve previously featured his Lego gaming computer, a striking case wrapped around what was a quite capable machine by 2016 standards, as well as an earlier case that reminds us a little of a NeXT. His reputation for Lego-clad computers led server maker Silicon Mechanics to commission a case for a trade show, and [Mike] jumped at the challenge.

Making a home-grade machine is one thing, but supporting all the heavy drives, power supplies, and fans needed to make the machine work is something else. He used a combination of traditional Lego pieces along with a fair sampling of parts from the Lego Technics line to pull off the build, which looks nearly perfect. Sadly, the Lego unit sizes make the case slightly taller than 2U, but that’s a small quibble when everything else matches so well, even the colors. And the fact that the server works, obviously important for a trade show demo, is pretty amazing too. The power supplies are even hot-swappable!

Congratulations to [Mike] on yet another outstanding Lego creation.

Rideable Tank Tread: It’s A Monotrack Motorcycle That Begs You To Stop Very Slowly

There will always be those of us who yearn for an iron steed and the wind through your hair. (Or over your helmet, if you value the contents of your skull.) If having fun and turning heads is more important to you than speed or practicality, [Make it Extreme] has just the bike for you. Using mostly scrapyard parts, they built a monotrack motorcycle — no wheels, just a single rubber track.

[Make it Extreme] are definitely not newcomers to building crazy contraptions, and as usual the entire design and build is a series of ingenious hacks complimented by some impressive fabrication skills. The track is simply a car tyre with the sidewalls cut away. It fits over a steel frame that can be adjusted to tension the track over a drive wheel and a series of rollers which are all part of the suspension system.

Power is provided by a 2-stroke 100cc scooter engine, and transmitted to the track through a drive wheel made from an old scuba tank. What puts this build over the top is that all of this is neatly located inside the circumference of the track. Only the seat, handlebars and fuel tank are on the outside of the track. The foot pegs are as far forward as possible, which helps keep your center of gravity when stopping. It’s not nearly as bad as those self-balancing electric monocycles, but planning stops well in advance is advisable.

While it’s by no means the fastest bike out there it definitely looks like a ton of fun. Build plans are available to patrons of [Make it Extreme], but good luck licensing one as your daily driver. If that’s your goal, you might want to consider adding a cover over the track between the seat and handlebars to prevent your khakis from getting caught on your way to the cubicle farm.

Continue reading “Rideable Tank Tread: It’s A Monotrack Motorcycle That Begs You To Stop Very Slowly”

Handheld LoRa Joystick For Long-Range Bots

Wanting a simple tool to aid in the development of LoRa controlled robotic projects, [Jay Doscher] put together this very slick one-handed controller based on the 900 MHz Adafruit Feather M0. With a single trigger and a miniature analog joystick it’s a fairly simple input device, but should be just enough to test basic functionality of whatever moving gadget you might find yourself working on.

Wiring for this project is about as simple as you’d expect, with the trigger and joystick hanging off the Feather’s digital ports. The CircuitPython code is also very straightforward, though [Jay] says in the future he might expand on this a bit to support LoRaWAN. The controller was designed as a barebones diagnostic tool, but the hardware and software in its current form offers an excellent opportunity to layer additional functionality on a known good base.

Everything is held inside a very well designed 3D printed enclosure which [Jay] ran off on his ELEGOO Mars, one of the new breed of low-cost resin 3D printers. The machine might be pretty cheap, but the results speak for themselves. While resin printing certainly has its downsides, it’s hard not to be impressed by the finish quality of this enclosure.

While LoRa is generally used for transmitting small bits of information over long distances, such as from remote sensors, this isn’t the first time we’ve seen it used for direct control of a moving object. If you’re not up to speed on LoRa, check out this excellent talk from [Reinier van der Lee] that goes over the basics of the technology and how he used it to build a community sensor network.

Smart Buoy Rides The Citizen Science Wave

Those beautiful and dangerous ocean waves that beckon us to the coast are more than just a pretty sight. They can tell us a lot about weather patterns and what the sea itself is doing. As vital as this information is, the existing methods of doing wave research are pretty expensive. The team at [t3chflicks] wanted to show it can be done fairly cheaply, to encourage more citizen scientists to contribute. More data means a better understanding, and open research benefits even those who don’t actively participate.

They have developed a smart buoy that collects wave data and transmits it back to a base station for real-time display. The buoy runs on an 18650 that gets recharged by four 5V solar panels situated around the top half of the 3D-printed hull. An Arduino inside the buoy controls the sensors, most of which are baked into the GY-86 10-DOF module. The antenna on top sends the data back to a Raspi Zero base station, which charts wave height, wave period, wave power, water and air temperature, and barometric pressure in real-time on a spiffy Vue JS dashboard.

The team had their ups and downs during this project. They wanted to measure wave direction, but it proved a bit too complicated. And memory issues prevented them from backing up the data to an on-buoy SD card. You can catch the more in-depth hardware and software videos on their YouTube channel. We’ve got the smart buoy summary video tied up and floating just after the break.

Want to help buoy wave research, but don’t have a 3D printer? Sealed PVC makes a fine flotation device, as we saw in this water quality-sensing buoy.

Continue reading “Smart Buoy Rides The Citizen Science Wave”

Books You Should Read: Exact Constraint: Machine Design Using Kinematic Principles

Surely, if you’re reading this website you’ve teased the thought of building your own 3D printer. I certainly did. But from my years of repeated rebuilds of my homebrew laser cutter, I learned one thing: machine design is hard, and parts cost money. Rather than jump the gun and start iterating on a few machine builds like I’ve done before, I thought I’d try to tease out the founding principles of what makes a rock-solid machine. Along the way, I discovered this book: Exact Constraint: Machine Design Using Kinematic Principles by Douglass L. Blanding.

This book is a casual but thorough introduction to the design of machines using the method of exact constraint. This methodology invites us to carefully assess how parts connect and move relative to each other. Rather than exclusively relying on precision parts, like linear guides or bearings, to limit a machine’s degrees of freedom, this book shows us a means of restricting degrees of freedom by looking at the basic kinematic connections between parts. By doing so, we can save ourselves cost by using precision rails and bearings only in the places where absolutely necessary.

While this promise might seem abstract, consider the movements made by a 3D printer. Many styles of this machine rely on motor-driven movement along three orthogonal axes: X, Y, and Z. We usually restrict individual motor movement to a single axis by constraining it using a precision part, like a linear rod or rail. However, the details of how we physically constrain the motor’s movements using these parts is a non-trivial task. Overconstrain the axis, and it will either bind or wiggle. Underconstrain it, and it may translate or twist in unwanted directions. Properly constraining a machine’s degrees of freedom is a fundamental aspect of building a solid machine. This is the core subject of the book: how to join these precision parts together in a way that leads to precision movement only in the directions that we want them.

Part of what makes this book so fantastic is that it makes no heavy expectations about prior knowledge to pick up the basics, although be prepared to draw some diagrams. Concepts are unfolded in a generous step-by-step fashion with well-diagrammed examples. As you progress, the training wheels come loose, and examples become less-heavily decorated with annotations. In this sense, the book is extremely coherent as subsequent chapters build off ideas from the previous. While this may sound daunting, don’t fret! The entire book is only about 140 pages in length.

Continue reading “Books You Should Read: Exact Constraint: Machine Design Using Kinematic Principles”

Using Machinery To Make Factory-Fresh Industrial Music

Many machines make music as a side effect, as anyone who owns a 3D printer can confirm. [工場音楽レーベルINDUSTRIAL JP] is working on a project to meld music and machinery in new ways. They are building a record label and a playlist based on the sights and sounds of small factories in Japan. Their videos combine the hypnotizing, rhythmic beauty of precision manufacturing process with music from local artists, and the result is like r/SoundsLikeMusic met up with How It’s Made and created a series of un-narrated industrial fever dreams.

While the focus is on high-tech factories, the content of these moodily-lit videos is pretty diverse. Never before have we been so mesmerized by the folds of an air filter or the pressing of vinyl records. Our favorite might be GOKO BANE, which takes a bumpin’ look around the Goko Spring factory. It makes us want to throw on some rags and dance like they do down in Zion.

Once in a while they will play around with the video speed of the factory process for effect, and it works nicely. If there’s any downside, it’s that no one process is shown from start to finish. But that’s not the point, anyway.

Don’t have access to a factory? Us either. But if you can get stepper motors, it’s pretty easy to make music by driving them forward, or even backward.

Thanks for the tip, [KILLERGEEK].